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Abstract 

Periodic structures which are slightly disordered undergo dramatic changes in mode shapes 
such that the responses go from being spatially extended to spatially localized. This phe- 
nomenon called mode localization, offers an excellent option for passive vibration isolation. 

In the first part of the thesis, we provide analytical prediction of modes exhibiting 
moderate localization using a newly developed Jordan Block Perturbation Method. We 
estimate and compare convergence zones of our newly developed method with perturbation 
techniques used to describe localized modes. 

In the second part of the thesis, we provide numerical evidence that complex branch 
points, which occur for complex disorder values in the mode-disorder relation, are responsi- 
ble for modal sensitivity. We investigate the effects of the strength of the branch point and 
their location in the complex plane. 

In the third part of the thesis we perform an optimization study involving the selection 
of parameters which ensure a minimum level of localization of all modes. Optimal solutions 
were found to lie at maximum distances from the branch points, and the convergence basin 
of each optimum was demarcated by the branch point surface. The number of local optima 
were found to grow exponentially with the number of pendula. A statistical analysis showed 
that sampling of 10% provided an estimate that was within 29c of the global optimum, 
thereby reducing the computational effort for small to moderate systems of pendula. For 
larger systems of pendula, the problem of obtaining the global optimum in reasonable time 
still remains an open problem. 

In the fourth part of the thesis we propose an application for mode localization in 
vibration isolation. An oceanographic mooring with regularly spaced buoys is investigated 
for localization of inline elastic oscillations. Localization is found to be useful for confining 
the harmonics in deep water moorings of 1000 — 4000m. 
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Chapter 1 

Introduction 

Elastic, periodic structures are characterized by spatially extended mode shapes and 

responses to input forcings (See Brillouin [6]). The typical periodic structure met in 

engineering practice can be modeled as a system of oscillators with identical natural 

frequencies. These are coupled together by some appropriate coupling element to 

build up the periodic structure. 

Under conditions of weak coupling, small changes in the periodicity (disorder) 

result in very dramatic changes in the dynamics of the system. Disordered, periodic 

structures are characterized by spatially localized mode shapes and responses to input 

forcings even at resonance. Thus, small perturbations to the structure have resulted in 

dramatic changes to the response and mode shapes of the system. Since the response 

of the system is uniquely determined by the modes of the system, it is evident that 

the key to understanding localization lies in understanding the sensitivity of the mode 

shapes to perturbations. 

The remarkable feature about localization is that conservative systems with a min- 

imal amount of damping display confinement of vibration about the driving point. 

Damping is unimportant in this phenomenon except as a means of preventing catas- 

trophic failure by draining out energy during steady state excitation of the structure. 

So damping can be ignored during analysis of localization. 
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1.1     Motivation for Thesis 

We will be examining the dynamics of disordered, periodic structures. We will, for 

most of this thesis, restrict our attention to a system of identical coupled pendula 

or coupled oscillators because this system is sufficiently simple to permit analytical 

treatment of the system while capturing all features of the dynamics of more com- 

plicated periodic structures. This has become a canonical system in the study of 

localization. 

The main feature of localization is the extreme sensitivity of the mode shapes of the 

structure to small perturbations of the periodicity of the structure. This sensitivity 

has a number of features on which we will comment. 

Previous authors like Cornwell and Bendiksen [9] have pointed out that if we view 

the modes as a continuous function of the disorder, the modes make the transition 

from extended to localized over a very narrow range of disorder. In other words, 

the localization is not a linear function of disorder. In general as disorder is input 

into the structure the modes change very dramatically initially, and then as we reach 

larger values of disorder the change is very little even though we increase disorder 

substantially. 

The structure appears to be sensitive to the precise combination of disorder input 

into the structure. For example, if we increase the natural frequencies of all the 

oscillators by the same amount, we still have a periodic structure and periodic mode 

shapes. If we increase the natural frequencies of one of the pendula only, to be much 

greater than the rest, its dynamics becomes decoupled from those of the remaining 

pendula because of the large difference in natural frequencies, and intuitively we can 

expect one mode to be significantly localized about that pendulum. It is thus obvious 

that the modes display different levels of sensitivity and localization depending on the 

combination of disorder input into the system and the actual functional dependence 

of the mode shapes on the disorder can be very complex. This fact can be seen in 

the results from extensive numerical experiments conducted on a system of coupled 

oscillators by Hodges and Woodhouse [19]. Any theoretical attempts to understand 
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localization must be able to explain all of the varied aspects of this sensitivity of the 

mode shapes. 

The reasons for interest in this sensitivity are twofold. The first, is the academic 

reason of understanding localization. The second, is the tremendous potential that 

localization offers as a passive vibration isolation device in ocean structures. It is 

difficult to apply conventional vibration isolation methods (using the presence of 

anti-resonances in the transfer function) to these structures because the resonances 

are closely spaced and narrow banded excitation would still excite all the modes. 

Localization is a viable option because even when we excite the structure at resonance, 

we still have a response confined about the excitation point. During steady-state 

excitation of the structure we have a buildup of energy in the structure. During 

localization, damping permits the structure to reach a steady-state by draining out 

excess energy in the structure. 

In sum, the two main reasons which motivated this thesis were the need to under- 

stand the large modal sensitivity in structures whose modes can be localized and the 

need to introduce disorder to ensure passive vibration isolation while ensuring that 

drag is minimum. 

1.2    History Of Localization 

Localization was first predicted by Anderson [1] in the context of solid state physics. 

This was first described in the context of the eigenstate localization of an electron in 

a three dimensional lattice. The existence of localization in one dimensional lattices 

was first shown by Borland [5]. 

Structural applications of localization deal with the one dimensional lattice. Its 

occurrence in structural dynamics was first shown by Hodges [16]. It must be pointed 

out here that most of the localization seen in solid state applications is for periodic 

structures where the substructures are of the order of 50 to 100 at least. The struc- 

tural dynamics applications on the other hand deal with a far smaller number of 

substructures, typically, less than twenty. 
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Early, fundamental work on localization in engineering structures was done by 

Hodges [16]. He demonstrated the existence of localization for short wavelength 

waves propagating in a structure. This would correspond to acoustic waves. Hodges 

and Woodhouse ([19]) examined structural applications by doing extensive numerical 

studies for systems of coupled oscillators and provided penetrating physical descrip- 

tions of the problem. They have provided insights into the statistical properties of the 

response of a system of oscillators when subject to input forcing. In particular, they 

have demonstrated how the logarithm of the response of the disordered structure, 

when averaged over many realizations of the ensemble containing all possible combi- 

nations of disorder that could be input into the system, yields a well defined mean. 

This has been used as the basis of the definition of measures for the localization in 

the system by other authors like Kissel [20] and Pierre [29]. 

An excellent review of localization is provided by Hodges and Woodhouse [18]. 

Here, they explained the equivalence of the modal and traveling wave formulation for 

vibrations in structures. They also discussed the connection with other commonly 

used analytical tools like Statistical Energy Analysis (SEA). They performed exper- 

iments to prove the existence of localization in a system of masses on a string [17]. 

This was the first experimental demonstration of localization in a structure. 

Since system responses are uniquely determined by the free modes of vibration 

of the system, many studies of localization using perturbation techniques applied to 

the eigenvalues and modeshapes of the system were carried out. Perturbation studies 

were done by Pierre and Dowell [27] , and Pierre and Cha [30]. They identified the 

fact that the two broad parameters affecting the problem were the coupling and the 

disorder. In general, if the disorder was larger than the coupling the modes looked 

strongly localized while if the coupling was larger than the disorder, the modes looked 

weakly localized. Small perturbations about the periodic state were described by 

the Classical Perturbation Method (CPM) which used the disorder as the expansion 

parameter in the perturbation expansion. The unperturbed state would comprise 

a set of spatially extended mode shapes. This method however failed to provide 

effective prediction of strongly localized mode shapes. Such mode shapes violated the 
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assumption that the coupling was stronger than the disorder. Pierre and Dowell ([27]) 

proposed an alternative scheme called the Modified Perturbation Method (MPM) 

where the coupling was treated as the expansion parameter and the unperturbed state 

was the localized state. This has proved to be effective in the analytical prediction 

of strongly localized mode shapes. Such mode shapes have large amplitudes over one 

oscillator and have a small nonzero amplitude over a few others. 

The analytical prediction of moderately localized modes has still remained an 

open issue as has been pointed out by Cornwell and Bendiksen [9]. Some attempts 

have been made to address this problem by Happawana et al. [15] who attempted 

to use singular perturbation methods to predict eigenvalues corresponding to a state 

of moderate localization. This singular perturbation was applied about the uncou- 

pled disordered state. Two criticisms can be levelled at the approach they took. The 

method is very cumbersome for even a small system of two coupled pendula. The sec- 

ond criticism is that the method obscures a lot of the physics involved in the problem. 

This harks back to some of the issues raised by Pierre and Dowell ([27]) in another 

context involving matrix perturbations about the uncoupled, periodic state where 

physical understanding can be sacrificed for accuracy of prediction by using such a 

state as the unperturbed state for performing perturbation calculations. Pierre and 

Dowell ([27]) discarded matrix perturbation expansions about the uncoupled periodic 

state because such a perturbation expansion did not provide any new information 

about the system even though it might have provided accurate predictions of the 

eigenvalues and eigenvectors. This is true in this case also. Both methods are very 

unwieldy and require considerable amounts of complicated algebra. The authors have 

attributed the rapid change of eigenvectors to the singular point about which the sin- 

gular perturbation was performed. This may be wrong. This would imply the point 

of maximum sensitivity is at the state of zero disorder and that may not be correct. 

They examined cases of very weak coupling and hence the modal sensitivity plots they 

show have maximum sensitivity at zero disorder. We will show in this thesis that the 

singularity responsible for the sensitive behavior of the eigenvectors is a branch point 

type singularity and the peak modal sensitivity does not necessarily occur at the 
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State of zero disorder, especially for cases involving moderate coupling. The authors 

also seem, not to have provided any predictions of mode shapes using their singular 

perturbation techniques which is after all more critical given that we are studying 

"mode localization". 

Cornwell and Bendiksen [10], Valero and Bendiksen [40] have investigated the 

existence of localization in another type of structure, the dish antenna. This is a 

system where we have a periodicity of a different kind. We have a rotary structure 

with the n th and first oscillators being connected to each other. In addition to dish 

antenna, they are important as models while studying turbine rotors and propellers. 

These authors have also done some extensive parametric studies on the problem where 

they noted that the transition of modes from extended to localized state occurs rapidly 

over a small range of parameters. They however could not identify the precise cause 

of the transition from extended to localized state. 

Additional aspects of localization have included association with the phenomenon 

of curve veering. In certain systems, eigenvalue loci of the system, when plotted as a 

function of a system parameter (for the system of coupled pendula, it is the disorder) 

approach each other and then rapidly veer away with interchange of mode shapes. 

This phenomenon is called curve veering. Pierre [28] found that the eigenvalue loci 

of the system of coupled pendula, a system which displayed mode localization, also 

exhibited curve-veering. He used conditions for curve-veering to occur (Perkins and 

Mote [25]) and showed that the conditions for localization to occur and those for 

curve-veering to occur are both linked to the existence of weak coupling. 

Much of the motivation for this thesis comes from the study by Triantafyllou 

and Triantafyllou [39] where localization was studied from a geometric standpoint. 

Existing studies, using perturbation techniques, indicated that the main cause of the 

large sensitivity of mode shapes seen during localization was due to the existence of 

closely spaced eigenvalues as seen in a system of coupled pendula. Triantafyllou and 

Triantafyllou pointed out it was misleading to attribute the large sensitivity seen in 

such systems to closely spaced eigenvalues. The central features of localization and 

associated curve veering were shown to be associated with the existence of branch 
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points in the frequency-disorder relation using asymptotic expansions. The branch 

points were shown to be linked to the existence of eigenvalue coalescences. In general, 

for a system with n eigenvalues, we could have n th root dependence of the eigenvalue 

on the system parameters, which would be linked to the existence of coalescences 

of n eigenvalues occurring for complex values of the parameter. The non-analytic 

nature of the branch point was held responsible for the dramatic changes in mode 

shapes which occurred for small perturbations applied to the system. Triantafyllou 

and Triantafyllou also showed that these branch points are responsible for the twin 

phenomena of mode localization and curve veering. 

This thesis does not cover all aspects of localization. However for completeness 

sake, we will review other work that has been performed in localization studies. 

Kissel [20] investigated the problem statistically, drawing on work performed by 

Hodges and Woodhouse ([19]) and solid state physics to define a localization factor 

associated with the localized transmitted wave in a disordered structure. He calcu- 

lated the localization factors associated with transmitted waves in various periodic 

structures averaged over many realizations from an ensemble of disorder. This decay 

factor was frequency dependent and he systematically created many frequency de- 

pendent plots of the localization factor for disorder drawn from uniform probability 

distributions with different standard deviations, for a variety of systems which would 

model engineering structures met in the real world. A big criticism levelled by Pierre 

[29] was that the structures examined by Kissel [20] did not allow for the existence 

of strong localization because he did not examine structures with internal coupling. 

Pierre [29] utilized statistical perturbation methods to compare those predictions 

with the results of Monte Carlo simulations of the type done by Kissel, but for struc- 

tures with internal coupling to allow for the existence of strong localization. He found 

that it was not possible to correlate the perturbation and Monte Carlo predictions for 

modes in a state of moderate localization. The Monte-Carlo and perturbation predic- 

tions for weakly and heavily localized modes were in excellent agreement. Seides [37] 

also performed such calculations with emphasis on marine structures. The statistical 

study of localization, while being a very interesting subject in itself, is not being pur- 
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sued in this thesis. We will be focusing exclusively on the effects of deterministically 

introduced disorder. 

Balmes [2] has provided some interesting observations about systems with high 

modal density i.e. systems where the modal damping is larger than the separation be- 

tween natural frequencies. He performed some numerical simulations to demonstrate 

cases where the mode shapes are very sensitive to small amounts of disorder, but the 

frequency response of the system remains relatively unaffected by the disorder. 

Experimental investigation of localization started with the fundamental work by 

Hodges and Woodhouse [17]. This was followed up with work by Pierre and Cha 

[30] and Levine and Salama [22]. They looked at localization seen in multispan 

coupled beams and in a space reflector respectively. Rajagopal ([34]) had conducted 

some experiments to satisfy ourselves about the localization process. We examined 

a structure similar to that examined by Hodges and Woodhouse, although we were 

examining it using steady state excitation. We did find localization achievable in this 

structure. 

Most of the studies reviewed so far have tended to idealize engineering structures 

as discrete coupled oscillators. Very interesting work on continuous systems has 

been done by Luongo [23] where he considered the longitudinal free oscillations of a 

beam with small axial rigidity continuously restrained by imperfect elastic springs. 

He showed that the problem can be viewed as being governed by a turning point 

problem. Some asymptotic predictions using WKB methods were obtained. Another 

very interesting piece of research was done by Devillard, Dunlop, and Souillard [12] 

where they examined gravity waves in a one-dimensional channel. Localization was 

studied for a bottom with a series of random rectangular steps. Transfer matrices for 

the linear dynamics of water waves on a flat shelf were used to model the dynamics 

of the system. Experimental evidence of localization for the water wave problem was 

provided by Belzons et al. 
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1.3    Review of Work  by  Triantafyllou  and Tri- 

antafyllou 

Since this thesis was motivated in large measure by the paper by Triantafyllou and 

Triantafyllou [39], we will make a detour to explain the concepts in that paper. 

1.3.1     Localization :  The problem and the need for a more 

mature understanding of the subject 

Consider a system of identical coupled pendula. We now permit disorder to be intro- 

duced into this periodic system.  Each pendula can have a perturbation e{ from the 

unperturbed state.   For the sake of standardization of the problem, we will always 

examine a set of pendula with length 1. The coupling between the pendula are also 

all identical and could be "weak" or "strong". The periodic system is characterized 

by a set of extended mode shapes. This is a result of Floquet theory and is explained 

in great detail in Brillouin [6].   Small alterations to the system (disorder) can re- 

sult in dramatic changes in the mode shapes from a spatially extended state to a 

spatially localized state.  It is found that the tendency for modes to be localized is 

more prevalent when the coupling is weak. Obviously, such rapid transition of mode 

shapes from extended to localized state implies extreme sensitivity of the modes. The 

cause of the extreme sensitivity has been understood to be caused by the "small de- 

nominator" effect.  Classical perturbation studies have shown that large changes to 

the mode shapes resulting in change from extended to localized state are caused by 

the denominator of the coefficients of the perturbation series being very small (hence 

the name).   The geometric theory however advances the cause of the large modal 

sensitivity seen during localization as due to something more fundamental, which we 

will explore in this section. Another intriguing aspect of localization is the fact that 

different combinations of disorder result in very different levels of localization of mode 

shapes in the system. We will see in this section that the geometric theory helps us 

understand the division of different regions of the parameter space into regions with 
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more and less localization. 

1.3.2    Main Points of Geometric Theory- 

There are three main stages in the development of the theory of Triantafyllou and 

Triantafyllou ([39]). 

We start by examining the mapping defined by the characteristic polynomial of 

the eigenvalue problem associated with a system which exhibits localization like a 

system of coupled pendula. This is a mapping from the disorder parameter space to 

the eigenvalues. There are n distinct eigenvalues which are obtained by solving the 

eigenvalue problem. For any given value of disorder, the eigenvalues may be distinct, 

or coalescent (See figure 1-1). The conditions for n coalescent eigenvalues in a general 

n parameter system ar 

A(A,e1,...en_1)=0 (1.1) 

3* A 
-^-(e1,...,en_1,A) = 0 (1.2) 

where 1 < i < (n — 1). Here A is the eigenvalue and e; is the disorder parameter. 

These are conditions for a saddle point to exist. We have so far made the assumption 

that since we are studying a real system of coupled pendula, the disorder can only 

assume real values. The solution to the above system of equations, however may be 

complex. Triantafyllou and Triantafyllou [39] made the bold but perfectly admissible 

contention that we should permit the disorder parameters to become complex. We 

would thus be permitting the parameters by analytic continuity to assume complex 

values. We would be making the assumption that the real and imaginary parts 

of the mapping defined by the characteristic polynomial obey the Cauchy-Riemann 

equations. We are allowing for the existence of branch points, branch cuts and other 

such features in the complex plane. 

The second stage of the analysis followed. Triantafyllou and by Triantafyllou ([39]) 

showed that these saddle points are associated with branch points in the frequency- 

disorder relation. The analysis used a Taylor expansion about a point at which the 
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(a) Distinct Eigenvalues 
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(b) Coalescent Eigenvalues 

Figure 1-1: Eigenvalues as a function of disorder. Case (a) : Independent eigenvalues. 
Case (b) : Coalescent Eigenvalues. 
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saddle point conditions for eigenvalue coalescence are satisfied. Consider a one disor- 

der parameter system with disorder e. If we consider a saddle point and that point is 

denoted by the coordinates (A0,eo)> the expansion for the characteristic polynomial 

is given by 

A(A, e) = A(A0, e0) + ^(A - A0) + ^(e - e0) + |^(A - A0)
2... (1.3) 

At the point of eigenvalue coalescence. 

A(Ao,eo)=0 (1.4) 

^-(A0,eo) = 0 (1.5) 

Using these two equations in the previous expansion for the characteristic poly- 

nomial, we collect the lowest order terms to get the following asymptotic relation 

A = A0 + Bs]{e-6Q) (1.6) 

At such a point, the eigenvalues cannot be expanded in a Taylor series and a series 

in fractional powers of the disorder (a Pusieux series) only, can be used. 

In general for an n parameter system we could have any from two through n root 

coalescences. Obviously an nth root coalescence is more desirable than a two root 

coalescence since the modes would be more sensitive (an nth root dependence) to 

small changes in disorder. 

The third stage of the analysis was to point out that these complex coordinates of 

eigenvalue coalescence were also points where there was infinite eigenvalue sensitivity 

since we have branch points at these points. The stiffness matrix at those values 

of the complex coordinate were associated with Jordan Blocks of size greater than 

one.   This implied that the associated eigenvectors would also be associated with 
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infinite modal sensitivity. If the complex coordinate had a sufficiently small imaginary 

part, they would lie very close to the axis of real disorder. Evidently the eigenvalue 

sensitivity would increase if the imaginary part tended to zero. Hence Triantafyllou 

and Triantafyllou pointed out that any attempts to search for localization in structures 

should focus on looking for structures where the imaginary part of the complex branch 

point coordinate was as small as possible and the order of the coalescence was as large 

as possible. 

They also pointed out that the failure of Pierre:s perturbation schemes was di- 

rectly related to the presence of these branch points. Triantafyllou and Triantafyllou 

however focused mainly on the eigenvalues of localizable systems and did not focus 

at all on the eigenvectors. They did not dwell at length on the modal sensitivity(as 

opposed to eigenvalue sensitivity) associated with these branch points. This is the 

starting point of this thesis. Modal sensitivity is the prerequisite for localization. It 

is important to link modal sensitivity with localization wherever possible. This was 

not done in Triantafyllou and Triantafyllou's paper. This is accomplished here. A 

complete investigation of the effects of the strength and location of branch points on 

localization is also performed. 

1.4    Goals and Contributions of Thesis 

The first contribution of this thesis is the development of Jordan Block perturba- 

tion methods to analytically describe modes in an intermediate state of localization. 

These modes are modes which display very high modal sensitivity and that makes for 

interesting study. 

The second contribution is the outlining of a systematic procedure to determine 

the convergence zones of the various perturbation techniques. 

The third contribution is providing numerical confirmation of the fact that branch 

points are directly responsible for the large modal sensitivity seen in systems which 

exhibit localization. This was done by numerical solution of the bifurcation equations 

provided by Triantafyllou and Triantayllou [39]. 
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The fourth contribution is explaining the reason for the fact that different combi- 

nations of disorder with the same statistical characteristics result in different levels of 

localization (noted by Hodges and Woodhouse [19]). This was done by noting three 

facts which are obtained from the geometric theory. The first is that both the order of 

coalescence and magnitude of imaginary part of the complex branch point coordinate 

are responsible for modal sensitivity. The second is that the number of oscillators 

having significant modal amplitude is equal to the order of coalescence of the closest 

branch point. The third, is the number of modes having large modal sensitivity is 

directly related to the order of the coalescence of the closest branch point. These 

three facts can be used to explain the reason for Hodges and Woodhouse's results. 

Various conflicting effects of different order branch points and their implications on 

localization were explored. Specifically, the nth root sensitivity of modes implied that 

n modes would display an n th root dependence on the disorder. Depending on the 

disorder combination we input, we could be close to branch points of different orders. 

A higher order branch point would cause more modes to have increased modal sen- 

sitivity as opposed to a lower order branch point if both were equally distant in the 

complex plane from real axis. The highest order branch point (n for an n pendula 

system) was found to be fixed whereas the lower order branch points were found to 

form a surface with the imaginary part varying across the surface. Conflicts arose 

when the imaginary part of the lower order branch point was sufficiently small to 

cause the associated sensitivity to approach that of the higher order branch point. 

The mode shapes close to different order branch points were also found to be very 

different resulting in modes which were localized while appearing very different from 

each other. We also find a trend that for larger values of disorder, the lower order 

branch point is more important in affecting localization while for smaller values of 

disorder, the higher order branch points affect localization. The existence of optimal 

directions in the parameter space where localization is a maximum is also noted. The 

existence of a form of curve veering associated with the branch point loci is also noted. 

The fifth contribution is the introduction of an algorithm using nonlinear opti- 

mization techniques to design a structure to ensure that all modes have a certain 
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minimum level of localization while ensuring that the sum of the squares of the dis- 

order is the minimum. The first result was that the optimal solution lay at the point 

of maximum distance from the two root coalescence branch point surfaces. The sec- 

ond result was the development of an algorithm to ensure that all the optima could 

be sequentially tracked down. The third result was that the number of optima and 

the computational effort increased exponentially with the number of pendula. The 

fourth result was a statistical analysis of these optima with relevance for smaller sys- 

tems ranging from approximately two to ten pendula which indicated that sampling 

of a few of the optima, gave a good estimate of the global optimum. This vastly 

reduced the computer time taken given the implications of the third result. However 

the exponential growth of the optima with the number of pendula implied that ob- 

taining a global optimum for a large system of coupled pendula in reasonable time 

still remained an open problem. 

The sixth contribution was a real-life application of this method to an oceano- 

graphic mooring. The mooring was a taut cable with submerged buoys at regular 

intervals. The studies showed mode localization to be excellent especially for deep 

water moorings ranging from 1000 - 4000m. 

1.5     Outline of Thesis 

Chapter 2 covers the Jordan Block Perturbation and examines applications to the 

analytical prediction of moderately localized modes. It also provides convergence 

zones for the perturbation techniques being used in this thesis. 

Chapter 3 offers numerical proof of the fact that modal sensitivity is directly linked 

to the branch points in the frequency-disorder relation. We investigate the conflicting 

effects of the order of the branch point and the location in the complex plane. 

Chapter 4 outlines the nonlinear optimization methods used for larger systems 

to determine optimum parameter combinations to ensure some minimum level of 

localization in the system. Applications of the method and a systematic study of 

the dependence of the optimum disorder on the minimum localization factor is done. 
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We also examine the inverse problem of maximizing localization for some given mean 

disorder in the system. Studies of the distribution of optima and a statistical analysis 

to show that the sampling of only a few optima can provide an excellent estimate 

of the global optimum is also provided. We also use this optimization scheme to 

search for special configurations which are close to multiple eigenvalue coalescences 

and satisfy the optimality conditions. 

Chapter 5 examines a real world application of mode localization in passive vibra- 

tion isolation. The structure that is studied is an oceanographic mooring with regu- 

larly spaced subsurface buoys. The main source of excitation was the wave induced 

excitation and the waves were inline elastic waves. The need to reduce vibrations 

arose because of the presence of instrumentation on the mooring which needed mini- 

mum motion for accuracy of measurement. Localization was induced by randomizing 

the positions of the buoys. It was found to be useful for passive vibration isolation 

for structures which were in deep waters (1000-4000 m). 

Chapter 6 covers conclusions and provides recommendations for future research. 
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Chapter 2 

Analytical Prediction of Localized 

Modes using Perturbation 

Techniques 

2.1     Introduction 

We use analytical perturbation techniques to study the modes of oscillation of a sys- 

tem of disordered, coupled pendula as seen in figure 2-1. Pierre and Dowell[27] pre- 

sented two perturbation methods, called the Classical Perturbation Method (CPM) 

and Modified Perturbation Method (MPM). The CPM used a set of identical coupled 

pendula as the unperturbed state. The CPM made the assumption that the disorder 

was much smaller than the coupling and used the disorder as the parameter in which 

the perturbation series was expanded. They were however only able to accurately 

describe modes which appeared almost periodic or "lightly localized". The second 

expansion (MPM) was about the uncoupled, disordered state. The MPM expansion 

was written out with the coupling being used as the small parameter for the pertur- 

bation series. The assumption here was that the coupling was much smaller than the 

disorder. The MPM was successful in describing "heavily localized" modes where the 

modes have significant amplitude on one pendulum with small non-zero amplitude 
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Disordered system of n coupled pendula 

Figure 2-1: A System of Coupled Pendula 
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on the other pendula. 

Neither of the perturbation expansions work for modes where the coupling is of 

the same order as the disorder. Triantafyllou and Triantafyllou [39] showed that the 

CPM and MPM are limited in their zone of convergence because of the existence of 

branch points in the eigenvalue-disorder relation. We have noted in Chapter 1 that 

the localization seen in modes varies nonlinearly with the disorder. As disorder is 

introduced into the system of pendula, the modes abruptly change from periodic to 

localized passing through the state of moderate localization. Once localized, they 

show very little change of modes with disorder. The MPM works well over this large 

zone of disorder over which there is almost no change in the modes. 

Moderately localized modes are associated with the intermediate range of param- 

eters where there is large sensitivity of modes in their transition from extended to 

localized state. In this chapter, we introduce a new perturbation method to describe 

modes in this intermediate state of localization. The perturbation expansion is per- 

formed about branch points in the eigenvalue-disorder relation. It fills in the gap left 

by the CPM and MPM and allows us to obtain an analytical description of modes in 

various states of moderate localization. 

It must be emphasized that the numerical methods for evaluation of eigenvalues 

and eigenvectors of matrices are sufficiently evolved to make redundant the usage of 

perturbation techniques for numerical calculations (especially for the size of matrices 

we consider for structural dynamics applications which range from two to twenty 

elements). However, while numerical calculations are important, we require analytical 

perturbation techniques to provide more physical insights into the problem, such 

as which parameters affect localization more, what are the parameters influencing 

the large modal sensitivity and what range of parameters are we more likely to see 

localization. 

33 



g 

m 

Disordered two pendulum system 

Figure 2-2: System of Two Pendula 
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2.2    Two pendula problem 

We will use the simple case of two pendula as shown in figure 2-2 to demonstrate the 

differences between the various perturbation expansions. The nominal pendula are of 

length / and have mass m which are taken equal to unity. The pendula are coupled 

by a spring with constant k. The variation in length of one of the pendula from 

the nominal length is denoted by Al. If we define a nondimensional spring constant 

R2 = ~j-, and disorder e = y, the eigenvalues are mg> 

A = = R2 1 
+ 2 + 

1 

2(1+ e) 

JAR
4
 + 

± *  
2 

e2 

(i+<)2 

(2-1) 

The first perturbation expansion that Pierre and Dowell ([27]) advocated was 

the CPM. Since small perturbations about the disordered state result in dramatic 

changes to mode shapes, Pierre and Dowell suggested that expansions be performed 

about the state of zero disorder with the disorder being used as the small parameter 

for the perturbation expansion. The CPM uses the periodic state as the unperturbed 

state corresponding to e = 0. The two unperturbed eigenvalues are A = 1,1 + 2R2. 

The CPM expansion for the eigenvalues as a series in the small parameter e (where 

e « R2) would be 

Ai,2 = l + Ä2-| + y±Ä2(l + ^j) + ... (2.2) 

During the expansion, Pierre and Dowell [27] made the assumption that the pa- 

rameter e was small in relation to R2 and this assumption is violated as e becomes 

larger. Pierre and Dowell found (as we will confirm later in this chapter) that there 

was very little change in the modes in the range considered and they appeared al- 

most periodic in appearance. He concluded that localization of modes would be 

seen more in the parameter range where the coupling was much smaller than the 

disorder(R2 « e). Obviously in this range of parameters, the assumption that 

e « R2 was violated. 

They put forward the MPM as a perturbation method to be used to describe 
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modes which were heavily localized. The MPM uses the state where R2 = 0 and 

|e| > 0. The unperturbed eigenvalues are A = 1 and A = 1 - e. The MPM expansion 

for the eigenvalues about the disorder e as a series in the small parameter R2 would 

be 

e      e      n2     e2      e2      i?4(l + e)2 

l--±- + R2 + -T-T o AM = I-5±5 + ä
J
 + ?TTT^-^ (2-3) 

This works well for heavily localized modes. However the second order perturba- 

tion fails as e -> 0 because the assumption that R2 is very small compared to e is 

violated. A very interesting feature of this breakdown is that the method does not 

break down for small e if the expansion is terminated at linear order but it breaks 

down if the expansion is terminated at quadratic order. This breakdown is related to 

the asymptotic nature of the MPM expansion. When asymptotic series break down, 

additional terms do not improve the predictive capabilities of the asymptotic series 

but actually reduce the quality of the prediction and in this case the MPM displays 

precisely this form of behavior. 

However, a gap in the accurate prediction of localized modes still existed. There 

existed an inability to describe modes in a state of intermediate localization which 

also corresponded to parameter values where e ~ R2. This manifested itself mathe- 

matically by the presence of branch points in the eigenvalue-disorder relation whose 

existence we next show. By analytic continuation, we permit the disorder parameter 

to become complex. The complex length has no physical significance and is mainly 

an outcome of the application of complex variable theory. Branch points occur in the 

frequency-disorder relation if 

—i^ <-> 
This is obtained by setting the expression under the square-root in equation 2-1 

equal to zero and solving for the disorder e. The new perturbation expansion which 

we introduce in this chapter is written about the branch point e0- At this point, the 

eigenvalues are equal and given by 
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Ao = 1 + R2 - iR2 (2.5) 

An expansion about the branch point can be obtained by setting 

C = e-e0 (2.6) 

We can expand the solution to eq. 2-1 in a series in the complex variable Q. We get 

Ai 2 - \+R2-iR2^^R2{l-riiR2)-Q{l~2'R2)2±d     ,— 1 +... (2.7) 
2 8%/iÄ2(l - 2iR2) v     ; 

There is an obvious difference in the expansions seen for the MPM and CPM as 

opposed to expansion about the branch point. There are additional fractional powers 

of the the small parameter appearing in the expansion. The square-root behavior 

exhibited by the eigenvalue is exhibited by the eigenvectors also. The eigenvectors of 

the two pendulum system can be expanded about the branch point to lowest order 

as 

{Q} = {    \   >±cM   i—\ + - (2-8) 

At the branch point, we have only one distinct eigenvalue and eigenvector for this 

matrix. The matrix is said to be associated with a Jordan block of size two and the 

matrix perturbation expansion about the branch point will henceforth be referred 

to as a Jordan Block perturbation. These branch points occur in complex conjugate 

pairs. Matrix perturbation techniques have their radii of convergence bounded by the 

distance to the closest singularity, in this case, the branch point. The CPM and MPM 

are restricted in their radius of convergence due to the branch point (Triantafyllou and 

Triantafyllou [39]). The Jordan Block expansion too is restricted in its convergence 

by the branch points however its convergence zone spans precisely those parameter 

values where the MPM and CPxM breakdown which also corresponds to moderate 
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Figure 2-3: Comparison of convergences of Jordan, MPM and CPM Methods. 
Exact. —: Perturbation prediction. 
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localization. We can see this by comparing the predictions of the eigenvalues for the 

three perturbation methods as a function of disorder (Fig 2-3). We consider the range 

— .08 < e < .08. The Jordan block prediction for the eigenvalues is seen to perform 

well in a significant portion of the range of parameters we consider i.e. -.04 < e < .04, 

while the CPM is seen to work well in the range -.02 < e < .02. The MPM works well 

in the range e > .04 and e < -.04. We will later see that the eigenvector predictions 

are far poorer than those for the eigenvalues. However this range .02 < |e| < .04 

where the CPM and MP Mperform poorly, is in fact the range where the Jordan 

block expansion outperforms the CPM and MPM. We will also show in this chapter 

that this zone is also a zone of maximum change of the eigenvectors. 

Expansion about a branch point would imply that we cannot utilize a standard 

Taylor series like we saw for the CPM and MPM. We have to use what is called 

a Pusieux series where rather than having the eigenvalues and eigenvectors vary as 

integer powers of the disorder, we have the eigenvalues and eigenvectors vary as frac- 

tional powers of the disorder parameter (Gohberg et al. [14]). In matrix perturbation 

theory, a Pusieux series is associated with perturbations about a Jordan block. In 

general for an nth root branch point, we could have an expansion in the nth root of 

the complex parameter £ and an association with a Jordan block of size n. The Jordan 

Block of size n would only have one distinct eigenvector and n repeating eigenvalues. 

2.3    Procedure for n-order Jordan block expan- 

sion 

The general system of n pendula has the following stiffness matrix 

[K] = Tridiag 2 (1 + Cj-.a) _ 1 (l+cj) 

(2.9) 

where 1 < j < n. The notation Tridiag(atj,ßj,Kj) designates a tridiagonal matrix 

with otj being the element of the lower diagonal (jth. row, (j - l)th column), ßj is 

the element on the main diagonal (jth row, jth column), and Kj is the element on the 
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upper diagonal (jth row, (j + l)th column). By definition o^ = Kn = 0. Also 5{j is 

the Kronecker Delta function and is defined as 

6i,j 
1   if i=j 

(2.10) 
0   otherwise  . 

The variables in the above equation are 

6j-. Disorder of j th pendulum. The pendula are numbered from left to right in figure 

2-1 with 0 <j < (n- 1). 

R2 = —: Nondimensional coupling parameter 

k: Coupling spring stiffness. 

g: Acceleration due to gravity. 

m: Mass of pendulum. 

1: Length. 

We write out the perturbation expansion about the branch point in the complex 

disorder space. 

[K0 + 5K + S2K + ...]{x0i + 6nX + ...} = (A0 + <J» A + ...){x01 + 5nX + ...}    (2.11) 

The stiffness matrix at the complex branch is K0.   We write out the ordered 

problem 

O(i) 

O(ei) 

Q(e^) 

[K0 - Ao/]zoi = 0 (2.12) 

[K0 - \0I]{ö±x} = 5»\{x} (2.13) 

[K0 - \0I]{6$x} = -[5K - Xil}{x01} + (S^X)5^x (2.14) 
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[K0 - XQI]{{62+a^{x}} = -[6K - 5\}[6l+^x] - [62K - 52\I][5^x}+     (2.15) 

(5^A)[52+2^x] + ... + (52+^A)x01 

All the quantities in the superscripts attached to 6 indicate the order of magnitude 

associated with those quantities. Thus on A indicates an nth root perturbation in A 

and [Snx] represents the nth root perturbation in the eigenvectors and so on. These 

equations govern the perturbations to the eigenvalue and eigenvectors at each order 

of the perturbation. We write out the expansions to order e2+ n because (as we 

will show later) in order that we solve the complete perturbation to order 0(e2) we 

have to utilize the perturbation equations to order e2+   «   . 

The first order and second order perturbed stiffness matrices about the periodic 

state are given by 

SK = Tridiag [-R2(Q-2 - G-i) ; -Q-i ; -R2(Q ~ G-i)] (2.16) 

and 

S2K = Tridiag [-Ä2^ - <&-i) ; C--i ; -R2(C]-, ~ 00-i)] (2.17) 

The first step in the method is to determine the complex coordinates associated 

with the branch point, and the eigenvalues and eigenvectors associated with the un- 

perturbed state. This unperturbed state is the zero-order problem. The eigenvector 

associated with the Jordan block obeys the standard eigenvector relation at the branch 

point, 
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[K0 - A0/]xoi = 0 (2.18) 

The Jordan Block perturbation method used the branch points in the mode- 

disorder relation as the unperturbed state. This is determined easily for a system of 

two coupled pendula. However for larger systems, we require mathematical equations 

to determine the complex disorder parameters which define the branch point. The 

characteristic polynomial of the eigenvalue problem is given by 

A(A.e1,...en_1) = |^-A/| = 0 (2.19) 

where the vertical bar denotes the determinant. The mathematical conditions for 

eigenvalue coalescence to occur can be derived by considering the form of the char- 

acteristic polynomial at the point of eigenvalue coalescence(Triantafyllou and Tri- 

antafyllou [39]). The form of the polynomial at the point of m root coalescence 

would be 

A ~ (A - A0)
m (2.20) 

where A0 is the coalescent eigenvalue. The condition for the coalescence of m eigen- 

values would be 

£-o ,,21) 
and i = 1, ...,m — 1 with m < n. This is in fact a condition for a saddle point to 

occur. Along with the equation for the characteristic polynomial, we have a system 

of m equations. We require m unknown variables to be guaranteed a solution to this 

system of m equations. 

If 77i = n which would then correspond to an n th root branch point, we would have 

to solve for the complex unknowns (A, ex, ...en_x). The n root coalescence is a "fixed" 

singularity. We get a set of isolated discrete points as the solution to the equations 

for eigenvalue coalescence. According to Bender and Orzsag [3], for a problem where 
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the dependence on the disorder parameter is linear, the number of n root coalescences 

would be n\ if the characteristic polynomial is of order n. 

Having determined the complex coordinates of n root coalescence, the next step is 

to calculate the eigenvectors associated with the Jordan block. We can only determine 

one eigenvector associated with the Jordan Block since the Jordan block of size greater 

than one is associated with a matrix of reduced rank. We however need a set of n 

eigenvectors to span the n dimensional space. This is done by constructing a special 

set of vectors called generalized eigenvectors which along with the single eigenvector 

span the n dimensional space. The generalized eigenvectors satisfy the following 

relation (Gohberg et. al. [14] and Wilkinson [41]), 

[K0 - A0/]x0i = zo(i-i) (2.22) 

where, 2 < i < n. 

These eigenvectors of the unperturbed state are the set of basis functions we use 

for expanding the eigenvector perturbations at each order of the perturbation. The 

eigenvectors at each order of the perturbation are expanded as linear combinations 

of the unperturbed eigenvectors 

S^x = J2 c*dx0j (2.23) 

Note m denotes the perturbation order and m = 1,2,.... During the perturbation 

expansion, we have (n + 1) unknowns. These are the unknown eigenvalue pertur- 

bation(one unknown) and the n coefficients (n unknowns cmj) which are used to 

linearly combine the n eigenvectors when we compute the eigenvector perturbation. 

However, we can only generate n equations by systematically multiplying the pertur- 

bation equation by the n left eigenvectors. We need one more equation to ensure that 

we have n+1 equations to solve for n +1 unknowns. This is obtained as follows. The 

eigenvectors which are perturbed must satisfy the orthogonality conditions between 

the right and left eigenvectors at all orders of the perturbation. The left generalized 

eigenvector y^ is the reciprocal of the right eigenvector.  As we perturb the vector 
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away from the Jordan Block, we get n splits in the solution. A split implies that 

as we perturb the solution away from the Jordan block vectors, we get n solutions 

emerging from a single vector corresponding to the Jordan block. Thus, 

y*ll(xn+8«x + 5nx + ...) = \ (2.24) 

Ordering terms, at all orders, we get 

y^x0l = 1 (2.25) 

and 

y&tx = 0 (2.26) 

During the perturbation expansion, we require the left eigenvectors as a set of or- 

thogonal vectors to determine the coefficients multiplying the generalized right eigen- 

vectors. Hence we next calculate the left eigenvectors. 

Although at the branch point, we have one left and one right eigenvector, they 

are orthogonal to each other. The reciprocal of each eigenvector is a generalized 

eigenvector. 

At the branch point, we only have one left eigenvector which obeys the following 

relation 

y»n{K0 - A0/] = 0 (2.27) 

where the superscript H denotes the hermitian operation of transpose and conjugate. 

The left generalized vectors satisfy the following relations. 

yS[K0 - X0I] = 4+1) (2.28) 

with 1 < i < n — 1. The left and right eigenvectors if chosen correctly, will obey 

orthogonality relations 
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ygx0j = ß6id (2.29) 

Here, 3 is a normalizing constant which is taken as one and 5id is the Kronecker delta 

function. 

We briefly outline the solution procedure. The perturbation problem to or- 

der ^ is said to be solved if we obtain solutions for all of the (n + 1) unknowns 

8^ \, cmi,..., cmin. In perturbation methods for matrices with distinct eigenvalues, 

we are able to obtain the entire solution to order m by solely utilizing the equations 

from that order of the perturbation. This is not true for the Jordan block expansion. 

cm. i can easily be determined using the orthogonality condition applied to the 

perturbed eigenvector (equation 2-24). We introduce the expansion in equation (2-23) 

into equation (2-24) to get 

caiX = 0 (2.30) 

Thus the eigenvector associated with the Jordan Block is only perturbed in the di- 

rection of the generalized eigenvectors. 

We still have n unknowns to determine. We use the perturbation equations at 

different orders to determine these coefficients. Each of these equations are matrix 

equations. Each of them are reduced to n scalar equations by multiplying successively 

by the left eigenvectors yoj, j = 1, ...,n. 

At the order m, we can obtain only two useful equations, the first is the orthogo- 

nality condition for the perturbed eigenvector at that order and the second equation 

is that obtained by multiplying the order m perturbation with yffv We obtain the re- 

maining (n— 1) equations by multiplying each of the successive (n-1) order equations 

by the eigenvectors y[?2, y{?3,... and ,yffn respectively. These equations are constructed 

so that even though they are obtained from utilizing perturbations equation whose 

order is greater than m, they still couple the unknowns of the order m problem only. 

Thus, in order to solve for the unknowns at order m. we have to utilize equations to 

order * + *=±. n n 
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The solutions for the two lowest orders are as follow: 

O(ei) 

ÄiA = WifiWM» (2.31) 

Note the n th roots of unity imply the presence of n splits in the solution and 

i — y/—T in equation 2-31. 

c=-2 = ('"A)w^j (232) 

ci,3 = .. = ci,„ = 0 (2.33) 

We note that most of the coefficients multiplying the various generalized eigen- 

vectors are zero until we reach integral or higher powers of the perturbation. The nth 

root dependence of the eigenvalue on disorder is transmitted to the eigenvectors also 

since the eigenvector coefficients depend on the eigenvalue perturbation. 

0(e*) 
2 

The trivial solutions to the 0(e«) problem are written below 

ciA = ... = cain = 0 (2.34) 

There is no simple closed form solution to the remaining non-trivial unknowns. They 

are obtained as solutions to the system of simultaneous, linear equations obtained by 

multiplying equations of 0(e«) through 0(en+:Lz~) by the generalized eigenvectors 

y<^2/o2>-"'2/o(n-i)'2/&ri successively. The equations which were generated are written 

below. 

czi2(y£x02) - 8n\(y^x01) = 0 (2.35) 
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ö" Aclin(y^,xofi) + <5» Ac^i n(y0^on) - y"n6Kxo2c± 2 = 0 (2.36) 

Higher order terms can be systematically obtained in this manner. 

We have so far consider cases where a stiffness matrix of size n * n is associated 

with a Jordan block of size n. We could also have situations where the Jordan block 

of size is of size m where m < n. Thus we can have m coincident eigenvalues and 

m root branch point between the eigenvalue and disorder. The remaining (n - m) 

eigenvalues are distinct and are associated with (n — m) distinct eigenvectors. At this 

mth order branch point we have one Jordan block of size m and (n — m) blocks of 

size one. We apply a hybrid of the Jordan block expansion and the expansion for 

matrices wit distinct eigenvalues. 

The unperturbed state is slightly different from the m = n case. Consider the case 

where m < n in equation 2-21. Along with the coalescent frequency, we can select 

m - 1 parameters, say Ci,..., em_i to be unknowns. This would imply that we have to 

provide arbitrary values to the remaining (n — m + 1) parameters em,..., en-i. In this 

sense, the lower order coalescences are "movable" singularities. Depending on the 

value we fix for em,.... en_x, we can get different values for the complex branch point 

coordinates. Thus rather than having a branch point we would have a branch point 

surface by allowing these arbitrarily fixed parameters to vary in a continuous fashion 

over the entire field of complex numbers. Next, we should realize that we could 

have taken another set of disorder parameter say en_m,..., en_i as our unknowns. We 

could in fact select m - 1 of these parameters in , x "!_m+1), ways. Hence we have 

an infinite number of points about which we could perform an m th root expansion 

where m < n. For an m root coalescence, with linear dependence of the characteristic 

polynomial on disorder (Bender and Orzsag [3]), we could have a maximum of "' , 

possible m root coalescences given a fixed set of values for the (n - m + 1) complex 

parameters. Since we could select these parameters in -,—r^- -r wavs, we would 
(m— l)'.{n—m+ly. *    ' 

have a total of (n_m)!(m_|)|(ri_m+1)! rnth root branch point surfaces for an m th root 

branch point. 
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2.3.1     Application of Jordan Block Expansion to Two Pen- 

dula 

We next work out the perturbation expansion for a two pendula problem as an ex- 

ample. The perturbation expansion is as follows : 

[K0 + dK + 62K + ...}{x(n+dix + 6x + ...} = (A0 + £2A + <5A + ...){xQi + ö*x + öx +...} 

(2.37) 

The first order perturbed stiffness matrix about the branch point is given by 

5K 
0 -R2( 

V  n   (1+eo)2 n   (l+6o)2 

(2.38) 

and the second order perturbed stiffness matrix is 

/ 
62K = 

0 0 \ 

R2C2 R2C2 

\ (1+60)3 (1+eo)3    ) 

(2.39) 

Note, the subscripts indicate the order of magnitude of the associated quantities. 

Thus all quantities with subscript \ are associated with e^ and so on. The appearance 

of fractional powers in the expansion is a direct outcome of the properties of the Jordan 

block. We write out the ordered problem : 

O(i) 

[K0 - XQI]xQ1 = 0 (2.40) 

O(et) 

O(e) 

[Ko-\0I]{6*x} = 5*\{x} 

[KQ - X0I]{Sx} = ~[8K - SXI]{x} + (5h)6ix 

(2.41) 

(2.42) 
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0(e*) 

[KQ - \QI]{6*}x = -[6K - 5l\I]{6*x} + {Sh){6x} + (Sh){x) (2.43) 

0(62) 

[K0-X0I]{62x} 

0(ei) 

-{ö2K-82\}{x}-{5K-(d\)I}{5x}+{5\)(6x)+(5h){ölx)+{8h)(6ix) 

(2.44) 

[Ko-X0I]{Slx} = -[52K -62M}{S"x}-[dK -5XI}{ölx} + {Sh)(S2x) + {Sh){52x) 

(2.45) 

Unlike the CPM and MPM, we have complex perturbation matrices.  The right 

and left eigenvectors and generalized eigenvectors for the unperturbed state are as 

follow: 

[X] = [zoi        x02] 

[Y)H = K      y&] = 

0 

(l-2iß2) (l-2ifl2) 

R2(l-2iR2) 

(l-2iR2) 

If we apply the orthogonality conditions, we get 

(2.46) 

(2.47) 

[Y}H[X] = [I] (2.48) 

YH[K){X] = (2.49) 

and 

" A0    1 

0    A0 

where the coalescence frequency is A0 = 1 + R2 - %R2. 

We shall solve the complete perturbation problem to 0(e2) only. As in classical 

matrix perturbation, we will expand the eigenvector perturbation at each order as a 
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linear combination of the basis vectors. If m is the order of the perturbation, 

S^x = cmtix0i +C2>i2:ro2 (2.50) 

The problem is said to be completely solved to any order m if we have solved 

for cmii,cm<2 and SmX. As we noted in the general n pendula problem, if we wish to 

solve the unknowns at order m, we will only get one useful equation at order m. The 

first equation is that obtained by using the orthogonality condition for the perturbed 

vector at order m. We get 

y&[5*x] = 0 (2.51) 

Applying equation (2-50) to (2-51), we get 

cf ,i = 0 (2.52) 

The unknowns cm.^ and 5* A are obtained by solving two simultaneous linear 

equations. The first equation is obtained by multiplying the order m equation by 

HQ2- This is the second useful equation at order m. As we noted in the general size n 

Jordan block expansion problem, we can obtain (n — l)(in this case one) more useful 

equation(s) by using the order ^ + £ through ^ + ^-^ order perturbation equations. 

The second equation is obtained by multiplying the order (y + |) equation by y^. 

The solutions to order 0(e2) is given below. 

%i = 0 (2-53) 

Ci2 = 8* A (2.54) 

6i\ = ± 

Ö(el) 

1 
y^K)X0l {255) 

J/oi^oi 
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ci.i = 0 (2.56) 

yg(6K)x0l        y^(SK)x0l "77  —  "UM IT  
ci'2 =    :. y»x;r (^) \ + m- 

VOI1*» 

fA_ ym(^)x02 + y^{6K)x02 

yoi^oi + 2/02^02 

0(e») 

aSl^o, + V^K^, _ ^K, + {skx)yH{SK)xo2 

2/01^01 + 2/02^02 

5§A= s2± m     TI **M 

0(62) 

(2.58) 

cf,i = 0 (2.59) 

yg{S2K)xol        (y&{6K)xo2)ci,i  _ 5\chl  _ yfc (SK)x0262 X 

_   y^xpiS^X y&XQ2Ö?\ six y"ix°i 
C| 2  (2.60) 

(1 + %^) V ' 

(2.61) 

C2,i = 0 (2.62) 

-vSi(S2K)x0l - y^K)X02clt2 + faoVoOy?(^)x02) + W*W,,a)(»fi«oi) 
C2i2 = - {y°2X02) (6tX)(y»2xo2) 

2/ofcoi + 2/02^02 
(2.63) 

yoi^oi + y&x02 
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V^K)X02 + <^ - '""^/f1"' - <-^f^ + M(^)*01) rt>  _ Si\ (52A (<5?A) 

yoi^oi + yo2:ro2 
(2.64) 

J/01^01 + 2/02^02 

The above represents the solution for the Jordan Block size two perturbation 

expansion to second order. 

We confirm our results with the closed form solution derived earlier in equation 

(2-7) and (2-8) by applying the order O(e^) solution. 

6h = ±C*ViR2~(l-2iR2) (2.65) 

cii2 = ±C* ViE?{l - 2iR2) (2.66) 

The predictions of the expansion match the closed form expansion derived ear- 

lier (equations (2-7) and (2-8)). 

It should be noted that the perturbation technique laid out here for the Jordan 

form and nondegenerate coalescences is different from that for matrices with degener- 

ate coalescences. There are n eigenvectors associated with the size n matrix unlike the 

Jordan form where we have fewer eigenvectors than the size of the matrix. The eigen- 

values and eigenvectors associated with a degenerate coalescence can be expanded in 

a Taylor series (Courant and Hilbert [11]) about the point of eigenvalue coalescence. 

We next compare the predictions of the three perturbation techniques in figure 

2-4. We retain terms to 0(e2) in our calculations. We define an error norm as follows 

e = maz(|7l
Q-7f|) (2.67) 

Here 7? is the localization factor of the zth actual eigenvector and 7? is the lo- 

calization factor of the zth predicted eigenvector. The localization factor definition 

is provided in Appendix A. The procedure to calculate the localization factor is as 
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follows : 

• Compute the logarithm of the absolute modal coordinate for each mode. De- 

termine the peak. 

• If the peak is at the end oscillator, fit a straight line through the logarithm 

of the modal coordinates. The slope of this line is the localization factor. If 

the peak is at a middle oscillator, compute the two localization factors for the 

decay in the mode on either side of the peak. Average the two values to obtain 

a single localization factor value for the mode. 

We use the maximum of these values since the prediction is as good as the poorest 

prediction. When the actual and predicted eigenvector are close, the error norm is 

small and the error is a continuous function of the eigenvector. However when they 

become poor in their fit, we start getting very poor and discontinuous variation of 

the function with the disorder. 

In figure 2-4, we provide a plot of the variation of the error norm e associated 

with the eigenvector. The MPM and CPM are less effective than the Jordan Block 

Expansion in the range of parameters |e| < .02 except right at the origin. The 

MPM appears to be accurate over a large range of parameters(|e| > .04). But, the 

modes change very little over that range. The Jordan Block method is valid over a 

smaller range (|e| < .04 . But the modes have maximum sensitivity in that range 

(.02 < |e| < .04) as they change from a periodic to a localized state. 

2.4    Higher Order Systems 

The two pendula problem was simple in that we had only one branch point (and its 

complex conjugate) to perform perturbation expansions about. There is increasing 

complexity in higher order branch points owing to the presence of branch points of 

different orders. We examine a system of three pendula (figure 2-5) to illustrate these 

ideas. The eigenvalue problem associated with the three pendula system is 
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(i+V 
(l+e2> 

System of Three Coupled Pendula 

Figure 2-5: System of three pendula 
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Branch Point «1 C2 

(a) 

(b) 

(c) 

.0145 ± .0268i 

.0043 ± .0262z 

.0099 ± .0144z 

.0101 

-.0099 

-.0008 + .0283Z 

Table 2.1: Three Root Coalescences 

A(A,e1,£2)=0 (2.68) 

where ei,e2 are complex disorder parameters. We can have a variety of eigenvalue 

coalescences. We could have two root coalescences. They are obtained as the solution 

to equation 2-68 and 

dA 
dX 

0 (2.69) 

We can either assign an arbitrary value to ei and solve for complex e2 or vice versa. 

There are an infinite number of two root coalescence points. We could have a three 

root coalescence by adding the condition 

d2A 

OX2 0 (2.70) 

We would then have to solve a set of complex nonlinear algebraic equations for 

the unknowns (A, ei,e2). The three root coalescence implies that three eigenvectors 

have large sensitivity on the nearby real axis while the two root coalescence implies 

that we have only two modes with significant sensitivity on the nearby axis providing 

the branch points are sufficiently close to the real axis. We plot projections of the 

complex lines of two root coalescences and three root coalescences on the real axes 

in figure 2-6. The three root coalescences lie close to where the two root coalescence 

lines approach each other. 

We now consider two lines along which we provide eigenvector predictions using 
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(a) Good Jordan prediction, poor MPM prediction. 
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(b) Good Jordan prediction, poor MPM prediction. 
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(c) Good MPM predictions, poor Jordan block predictions. 
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Figure 2-7: (a) : Jordan block and MPM predictions at PI (ei = .01, e2 — 
.01) Branch point (a) Jordan block expansion, (b) : Jordan block and MPM 
predictions at P2 (ei = .01, e2 = -.01) Branch point (b) Jordan block expansion, 
(c) : Jordan block and MPM predictions at P3 fa = .06, e2 = --06). (D: 
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the Jordan block expansion and MPM at various points. The first line is ei = — e2. 

We provide plots at the points PI (a = -.01,e2 = -01), P2 (ei = .01, e2 = -.01),P3 

(ei = .06, e2 = —-06). The three points on this line are represented as triangles in 

figure 2-6. Point PI and P2 are in the zone where the cube-root branch point effect 

is important while P3 is in a zone where all the modes are localized and is also far 

away from all branch points. PI is on one side of the branch point (b) while P2 

is on the other side of the branch point while being sufficiently far away from the 

branch point to ensure the modes appear reasonably heavily localized. Two themes 

are developed using these three points. The first is that the Jordan block expansion 

performed well in a zone where all three modes are varying rapidly in response to 

disorder. The second point is that the edge of the predictive capabilities of the Jordan 

block expansion is such that modes in the entire range of intermediate localization 

are covered. In figure 2-7, we provide Jordan block expansion and MPM predictions 

at each point. The Jordan block expansions are performed about branch point (a) at 

point PI and branch point (b) at point P2. In figure 2-7a, we provide Jordan block 

and MPM predictions at PI. In figure 2-7b, we provide Jordan block expansion 

and MPM predictions at P2. Finally, in 2-7c, we provide Jordan block and MPM 

predictions at P3. These points start on one side of the origin, move to the other side 

and gradually enter a zone of large disorder. Points PI and P2 are in a zone where 

the highest order Jordan block expansion performs well and the modes are moderately 

localized while point P3 is in a zone where only the MPM performs well and all the 

modes are heavily localized. There is a gradual increase in localization in the modes 

when we pass from PI to P2. The third point is associated with localization of all 

the modes. The Jordan block method which performs well at points PI and P2 

performs poorly at point P3 while the MPM performs poorly at points PI and P2 

but performs well at point P3. 

The second line is along the coordinate ei = .06 and predictions at two points 

PI and Pi are plotted in figure 2-8. The two points on this line are represented by 

squares in figure 2-6. The theme developed in this figure is that there are lower or- 

der branch points (in this case, square-root branch points) in addition to the highest 
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(a) Good Jordan prediction, poor MPM prediction. 
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(b) Good MPM prediction, poor Jordan prediction. 
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branch points and expansions about these branch points aid in providing analytical 

descriptions for modes in an intermediate state of localization. The modes are quali- 

tatively different in appearance from the kind of modes we saw close to at cube-root 

branch point. Here one mode is localized and two have intermediate localization 

unlike near a cube-root branch point where all three modes displayed moderate local- 

ization. The points along this line which we consider are Pi' (ei = 0.06,e2 = .001,) 

and P2 (ei = .06, e2 — .03). The Jordan block expansion which we use is a two 

root coalescence expansion performed about the point e2 = 0.0001828+ .004099z, and 

€i = 0.06. In sum, we have a wide variety of modes in various states of moderate 

localization which can be described well using Jordan block expansions about various 

order branch points. 

We now construct some rules for questions like do we use the MPM or Jordan block 

expansion to determine the modes associated with a given point in the parameter 

space. If we use the Jordan block expansion, which order coalescence do we use and 

how do we select the correct branch point from the ones we have ? We will discuss 

these questions here with emphasis on the three pendula problem and then the ten 

pendula problem. 

We construct convergence zone diagrams for the MPM and Jordan block expansion 

for the three pendula system. We have two and three root coalescence branch points 

associated with this system. However the MPM which is an expansion about the 

uncoupled disordered state has a convergence zone only to the outermost branch 

points. The convergence zone for the MPM and Jordan Block'Perturbation Method 

for a three pendula system are shown in figure 2-9. Since the complex conjugate 

square-root branch points straddle the real axis and are placed at a distance Jm(ej) 

on either side of the real axis, the MPM convergence zone is essentially the envelope 

formed by the lines Re{ei)±Im(ei) where Refa) and Imfe) are the real and imaginary 

coordinates of the two root coalescence branch point associated with the three pendula 

system. The convergence zone for the MPM is exclusively determined by the geometry 

of the branch points. Determining the zone of convergence for the Jordan block 

expansion is complicated because we have different Jordan block expansions. We have 
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six possible three root coalescence Jordan block expansions and an infinite number 

of two root coalescence Jordan Block expansions. We can only talk in terms of a 

convergence envelope where either one or the other Jordan block expansion can be 

used. Hence, we provide an envelope convergence zone in which one or the other 

Jordan Block expansions would be valid. This is the region interior to the MPM 

convergence zone. 

Let us assume we are in a zone of parameters where the Jordan block expansion 

is valid. There are altogether six cube-root branch points given in table 2-1. How 

do we choose the correct branch point to perform the expansion ? Let us say we are 

considering a combination of parameters (ei, e2). If all three modes display appreciable 

modal sensitivity close to this region of the parameter space, we can conclude we have 

to use a third order branch point expansion. The next question, is which of the three 

branch point do we use as our expansion point ? The branch point which is the 

closest to the point in question is used as the branch point for expansion. It is very 

interesting that if we take a sample of points ranging from |ei| < .02 and e2 < -02, 

and compute the closest branch point to each point in the disorder space, only branch 

points (a) or (b) contribute to the solution set. Branch points (c) are slightly deeper 

in the complex plane but are situated so that they are further away (relative to (a) 

and (b)) from the point considered in the disorder parameter space. When we have 

larger values of disorder ei,e2 — 0(R2) or greater, we find two situations : the first 

is that where all three modes are localized and the second is where only one mode 

is localized. The case where two modes are extended is typically a case where two 

modes display appreciable sensitivity. In the first case, we use an MPM expansion 

while in the second case we use a square-root branch point expansion. We determine 

the point of expansion by determining the closest two root coalescence line. These 

ideas are applicable to larger problems. We would then examine m modes for their 

sensitivity and extended nature. We would subsequently use a Jordan block size m 

expansion. For this three pendula system that we are studying, we would thus use a 

Jordan block size three or size two expansion. The details of the Jordan block size 

three expansion are shown in appendix C. The perturbation expansion for a size three 

62 



^cnveroence Zone for MPM 

M?M 

0L- 

-0.02h 

i 
•O.Kr 

i 
I 
I 

-0.05:- 

-0.08 

MPM 

MPM 

•0.1'- 
-J.1       -3.08     -0.06     -0.04     -;..02 

Jordan 

MPM 

MPM 

MPM 

0.02       :.04       0.06 0.1 

Figure 2-9: Convergence zone for MPM and envelope of convergence for Jordan block 
expansion 

63 



Jordan block expansion is of the form 

[K0 + SK + S2K]{x0l + 6*x + öh + Sx + ...} = (2.71) 

(A0 + ^3 A + 6*\ + SX + ...){xoi + S*x + S*x + Sx + ...} 

where xoi is the eigenvector associated with a Jordan block of size three. 

Different branch point expansions are valid in different zones of the parameter 

space. In figure 2-10, we show eigenvector predictions at two points (Bl) and (B2) 

using two different Jordan block size three expansions. Point (Bl) is at ei = .005 and 

€2 = .01. Point (Bl) is closer to branch point (a) but further away from branch point 

(b). Point (B2) is closer to branch point (b) but further away from branch point 

(a). We provide predictions close to branch point (a) in figure 2-10 a and predictions 

close to branch point (b) in figures 2-10 b. Clearly the branch point (b) expansion 

fares poorly in comparison with the branch point (a) expansion in 2-10 a. It is clear 

that this point is very close to branch point (a) and far away from branch point 

(b) and hence the reason for one expansion performing better than the other. Point 

(B2) is ei = .005, e2 = —.01. The branch point (a) expansion in figure 2-10 b fares 

poorly compared to the branch point (b) expansion in figure 2-10 b in this zone of 

the parameter space. It is obvious that in moving from point (Bl) to point (B2), we 

have gone from a point where a branch point (a) expansion performed better to a 

point where a branch point (b) expansion performed better. 

In sum, if we examine the MPM convergence zone from figure 2-9, it is clear that 

in the zone where the disorder ez- ~ 0(R2), we can use the Jordan block expansion. 

In the zone where |ej| >> R2, we can use the MPM if we are clear of the square-root 

branch points. It is also clear that the modes change very dramatically in this small 

zone of parameters where Jordan block expansions are applied as seen in figure 2-7, 

2-8 and 2-10. Hence the Jordan block expansion is useful in zones where there is 

dramatic variation of the mode shapes. 
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(a) Good Jordan block (a) and bad Jordan block (b) prediction. 
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2.4.1    Prediction of modes for ten pendula using lower order 

coalescence expansion 

We have so far been looking mostly at eigenvector predictions where the Jordan block 

is the same size as the stiffness matrix. For example in an n pendula system, we have 

a Jordan block of size n. We next examine a case where the Jordan block is of size 

m where m < n. In such a case, we would have an mth root branch point in the 

eigenvalue-disorder relation. If we apply a similarity transform, we would get 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

YH[K][X]=     0    0   0   0    0    Am+1       0      0   0   0    0 (2.72) 

Am+2 0 0 0 0 

.000 

0.00 

0 0.0 

0   0   0   An 

When we apply a Jordan block expansion about this point, we would be using 

a hybrid of two methods. The first method is the Jordan block expansion while 

the second method is that used for matrices with distinct eigenvalues (Courant and 

Hilbert [11]). The m eigenvectors associated with the Jordan block are expanded in 

a series in powers of the m th root of the disorder parameter. The other eigenvectors 

can only be expanded in integral powers of the disorder parameter. We examine the 

expansion associated with a Jordan block of size two as a special case to illustrate a 

few principles. The eigenvectors associated with the branch point are expanded using 

the equation similar to that for the square-root branch point. 

Ao 1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 Ao 0 0 

0 0 0 0 0 Am+1 0 

0 0 0 0 0 0 Am- 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
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[K0+5K+52K+...}{xoi+S^x+dx+...} = (X0+6^X+SX+...){x+6^x+Sx+...} (2.73) 

The eigenvector not associated with the branch point can be expanded using a Taylor 

series. 

{K0+5K+S2K+...]{xoj+6x+62x+...} = (\0+5\+52\+...){xoj+5x+62x+...} (2.74) 

XOJ is the eigenvector not associated with the branch point. There is clearly a big 

difference between the expansions used for the two types of eigenvectors. At each 

order, the branch point perturbation is expanded using equation 2-23. 

The issue of interest is to determine the nonzero coefficients in the expansions for 

the eigenvectors associated with the branch point. The generalized eigenvector is the 

eigenvector number 1. Since the eigenvector is perturbed away from eigenvector 1, all 

the coefficients associated with that eigenvector are zero for all orders. Many of the 

other eigenvector coefficients are also zero making the calculation relatively simple. 

We will refer to this method as a hybrid Jordan block expansion to distinguish it 

from the Jordan block expansion. 

We provide lower order coalescence expansion predictions for moderately localized 

modes of a system of ten coupled pendula. We could have used a ten root coalescence 

expansion but determining the ten root coalescence coordinates is difficult because 

as the order of the characteristic polynomial increases, the roots of the polynomial 

become increasingly sensitive to small perturbations to the coefficients of the poly- 

nomial. So truncation errors can cause us to make errors in our estimate of the 

branch point. For example if we calculate the n root coalescence coordinate correct 

to p decimal places, and then substitute the disorder values back into the stiffness 

matrix, we would have errors of 0(10" £) in the eigenvalues due to the n root de- 

pendence of the eigenvalue on disorder. If n = 10 and m = 8, we would only be 

able to obtain 10~s accuracy which is not even one decimal place accuracy. There 

is another important effect of computing higher order coalescences. The coefficients 

67 



of the characteristic polynomial are polynomial function of R2. For larger systems, 

the polynomial coefficients could be function of high powers of R2. If the coupling 

is a small number like .01, we would get round-off errors affecting the coefficients of 

the polynomial. For example, if we have coefficients which are functions of (R2)9, 

we would have, due to finite precision effects, lost significant digits associated with 

these coefficients if we working in double precision, n th root amplification of this 

error would result in O(.l) errors in the roots of the equation. The Jordan block 

vectors (especially the generalized eigenvectors) are very sensitive to small errors in 

calculation of the complex branch point coordinates. Since we cannot compute higher 

order coalescences accurately, we cannot provide analytical prediction of modes for 

large systems of pendula for cases where the disorder is very small, and where all, or 

a large number of modes show appreciable modal sensitivity. Even if we were able 

to calculate the complex coordinates for eigenvalue coalescence, we would require a 

large number (2n) of terms to obtain reasonable eigenvector predictions since we are 

expanding in powers of e» where e is the disorder parameter. As an example of the 

computational needs, for n = 20, we would require 40 terms if we wish to expand the 

series to order e2. 

We follow the techniques described earlier in performing hybrid Jordan block 

expansions. We provide a Jordan block expansion about the disorder parameter 

eg = —.2643 — .4866z. This is a point of two root coalescence. We provide predictions 

of the two modes which are linked with the two root coalescence. We cannot use the 

MPM because adjacent modes have zero disorder. We use the CPM because it is 

is the only expansion which could provide predictions in this zone of the parameter 

space. We again traverse two points along a line. The first point is £1 with coordinate 

€i = 0, e2 = 0,..., e8 = 0, e9 = —.2643, and the second t2 with coordinate e\ = 0, e2 = 

0,... = eg = 0,69 = —.0043. The first point is close to the two root coalescence. 

The second point is close to the periodic state. If we could use a 10 root coalescence 

expansion, we would get excellent predictions for the second case. However, due to 

our numerical constraints we will only explore the predictive capabilities of a two root 

coalescence expansion. Point tl and t2 lie on this straight line. The predictions are 
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shown in figure 2-11. The Jordan Block method (2-lla) works far better than the 

CPM (2-llb) at the point tl. The CPM works better at t2(2-lld) than the Jordan 

expansion(2-llc). The CPM is useful only for modes which are almost periodic. This 

is obvious by examining the modes predicted by the CPM. The MPM is far more 

useful for examining heavy localization than the CPM. The Jordan Block method is 

the third alternative in the analytical study of localized modes. 

2.5     Conclusions 

We provide a new method in the analytical description of localized mode shapes 

thereby extending the existing predictive capabilities of perturbation techniques. The 

MPM and CPM expansions are useful for describing lightly and heavily localized 

modes over a vast range of disorder parameters. The intermediate and relatively 

smaller range of parameters corresponds to moderately localized modes. The mode 

shapes in this range of parameters display maximum sensitivity in their transition 

from periodic to localized modes. We demonstrate that the usage of different order 

Jordan block expansions is useful in describing different modes in this intermediate 

range. We also provide convergence zones associated with different expansions. The 

drawback of this method associated with numerical limitations, (i.e. the inability to 

calculate the branch points associated with higher order coalescences) is discussed. 
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Chapter 3 

Investigation of the effects of the 

strength and location of the 

branch points on localization 

3.1    Introduction 

We have in the previous chapter found the general trend that the modes in an in- 

termediate state of localization displayed large sensitivity to disorder. Jordan block 

expansions about these branch points were useful in describing modes in an interme- 

diate state of localization. However we have only talked in very general terms about 

the sensitivity of modes without specifying any quantitative measures for localiza- 

tion. We introduce quantitative measures for modal sensitivity and localization in 

this chapter and then use these measures to study localization. 

Triantafyllou and Triantafyllou [39] performed asymptotic analyses to demon- 

strate that branch points in the frequency-disorder relation were responsible for the 

large sensitivity seen in localization. The term "geometry" refers to the properties 

of points and surfaces. Depending on the number of pendula and disorder parame- 

ters, we could have either a simple branch point in the eigenvalue-disorder relation or 

more complicated surfaces (when the term branch-surface would be more appropri- 
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ate). The branch point geometry is responsible for the large sensitivity seen in systems 

exhibiting localization. The strength of the branch point (referring to the order of the 

branch point in the mode-disorder relation) and the location of the branch point with 

respect to the real axis are the main geometric properties which control the modal 

sensitivity and localization. The precise distribution of these branch points which 

have varying strengths (determined by the order of the branch point) and distances 

from the real axis is responsible for the varying levels of sensitivity to different com- 

binations of disorder. A very rich analogy exists with the field of electromagnetism. 

The electromagnetic field at a point is determined by the distribution of singularities 

of varying strengths like poles, dipoles, quadrupoles etc. and their distance from the 

point of the space in question. In complete analogy, we have a set of singularities 

(albeit weaker, being branch points) of varying strengths (the n th root dependence 

on disorder where n is the variable order of the branch point) and varying distances 

(depending on their positions in the complex plane) from the point of the disorder 

parameter space in question, defining the modal sensitivity (or alternately the local- 

ization) at the point. One special feature of localization which does not exist in the 

electromagnetic analogy is that n modes show appreciable sensitivity if the disorder 

parameter combination is close to an n root coalescence (Refer Chapter 2, Jordan 

Block Perturbation for a Jordan block of size n). 

This chapter explores the complex implications on mode localization due to the 

distribution of these branch points in the complex plane. Sensitivity is connected to 

localization because the integral of the modal sensitivity is related to localization. 

So understanding sensitivity helps us understand a number of problems in localiza- 

tion. One problem which will be resolved here is the observation by Hodges and 

Woodhouse([19]) that similar combinations of disorder which share the same statis- 

tical properties (we examine the mean square disorder here) result in different levels 

of localization. Another problem which we look at is the utilization of this knowledge 

of the distribution of strength and location of branch points to determine directions 

to search parameter combinations which have minimal mean square disorder. We 

also study the conflicting effects of the two geometric properties i.e. the strength and 
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location of the branch point by examining some unusual configurations. Modal sen- 

sitivity of configurations which are associated with high strength branch points can 

sometimes be lower than those associated with lower strength branch points owing to 

differing locations of the branch points. 

Obviously the presence of damping would alter the characteristic polynomial and 

alter the positions of the branch points in the complex plane. We neglect damping 

from the analysis because the effect of damping is not very relevant in the study of 

localization. 

3.2    Two pendula example 

We utilize modal sensitivity and localization factor definitions from Appendix A 

throughout to quantify localization and modal sensitivity. The modal sensitivity 

for a system dependent on only one parameter e is determined by the 

_,     .        Lim   \q(e + e) - q(e)\ 

If the system is dependent on two parameters say ex and e2, the modal sensitivity 

would actually represent a partial modal derivative. The total modal derivative or 

modulus of modal sensitivity would be 

Qfo) = EQfa,e;)2 (3-2) 
j=\ 

The localization factor which is also defined in Appendix A is a measure of the 

exponential decay associated with the mode shape. It is based on the exponential de- 

cay associated with modes displaying heavy localization. The constant of exponential 

decay is assumed to be the localization factor. For modes displaying light localization, 

we do not usually witness a clear exponential decay and hence an exponential curve 

is fitted through the modal amplitudes to give a value for the localization factor (see 

Chapter 2 for details). 

Asymptotic analyses performed by Triantafyllou and Triantafyllou [39] showed 
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that the cause of the large modal sensitivity seen in localization was the presence of 

branch points in the mode-disorder relation. For a system with n disorder parameters, 

the mth root branch points could be determined by solving the equations 

A(A,e1,...en_1) = |A:-A/|=0 (3.3) 

and 

w = ° ^ 
where 1 < i < m — 1 and m < n. 

Here K is the stiffness matrix associated with a system of n disordered pendula 

and e, (1 < i < n) are the disorder parameters introduced into each pendulum. The 

stiffness matrix as described in Chapter 2 is 

[K] — Tridiag R (1 + e^) ' (1 + e^) + (2 - >* ~ S^)R  ' -R ÖT7-T) 
(3.5) 

where 1 < j < n.  The notation Tridiag (a j, ßj,Kj) designates a tridiagonal matrix 

with OLJ being the element of the lower diagonal (jth row, (j - l)th column), ßj is 

the element on the main diagonal (jth row, jth column), and Kj is the element on 

the upper diagonal (jth. row, (j + l)th column). By definition ai = Kn — 0.5itj is the 

Kronecker Delta function. 

Consider a system of two coupled pendula with disorder e. Consider in figure 3-1 

the modal sensitivity plotted as a function of disorder. This is done for three values 

of the coupling parameter. Clearly, the peak is not centered at zero disorder and the 

off-centered nature of the peak becomes more pronounced as we increase coupling. 

Conventional perturbation techniques(Pierre and Dowell [27]) indicate that the main 

cause of the large modal sensitivity is the closely spaced nature of the eigenvalues and 

that the peak modal sensitivity is at the point where the difference in the eigenvalues 

is minimum i.e.  the point of zero disorder.  This graph would seem to indicate the 

close eigenvalue spacing may not be the reason for the large modal sensitivity since 

the peak is not at the point of zero disorder. The reason for the off-centered peak can 
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be clearly understood by inspecting the expression for the branch point in equation 

3-5. 

60 = ±Ö^WH) (3"6) 

There is a real negative part associated with the branch point coordinate. Its 

magnitude increases with coupling. So we should see a leftward shift in the peak of 

the modal sensitivity curve with an increase in coupling. Of course there is a decrease 

in the peak sensitivity with the increase in coupling because of the rapid approach of 

the branch point towards the real axis. See figure 3-2 for the variation of position of 

the branch point in the complex plane as a function of the disorder. 

We also provide a plot of the variation of the localization factor versus disorder 

for a two pendula case in figure 3-3. The localization factor plot is also slightly 

asymmetric indicating a path skirting the branch point would result in larger change 

and quicker transition to localized state (i.e. the e < 0 contour) as opposed to 

the e > 0 contour which results in a slower transition to localized state. This seems 

reasonable because localization is proportional to the area under the modal sensitivity 

curve. Moving along the e < 0 contour results in our covering greater area under the 

modal sensitivity curve as opposed to moving along the e > 0 curve where far less 

area under the modal sensitivity curve was covered. Already an important fact has 

emerged. If our interest is to induce a certain level of localization in the modes of 

the structure, some combinations are more effective than others. Here, to ensure a 

localization factor of 7 = 1.6, we would have to pick a disorder magnitude e slightly 

less than .05 if we considered negative disorder whereas if we considered positive 

disorder, we need a disorder magnitude slightly greater than .05. 

3.3    Three Pendula Example 

We now consider a system of three pendula with disorder parameters (ei,e2). We 

could either have square-root or cube-root type branch points in the mode-disorder 

relation. The cube-root branch points can be obtained by solving equations 3-1 and 
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Two Penduia : Localization vs. Disorder 
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Figure 3-3: Localization factor versus disorder 

3-2 with m = 2. We could also have square-root type branch points in the mode- 

disorder relation. If we solve equations 3-1 and 3-2 with m = 1, we could solve 

for square-root branch points. As we have remarked in chapter 2. we have only two 

equations and three variables A, ei and e2 as variables. The only way to ensure unique 

solutions for equations 3-1 and 3-2 is by arbitrarily fixing one parameter say eT and 

solving for A and e2 as unknowns. We could do the reverse i.e. fix e2 and solve for the 

unknowns A and 6\. The next question is what arbitrary value do we fix for e\ for the 

first case. We could permit ex to vary over the entire field of complex numbers. But 

we should pick that point on this surface which exerts maximum influence on the real 

axis. A reasonable argument is that we only permit E\ to assume real values. e2 and A 

are complex. If this choice is correct, we should expect to see the square-root branch 

point lines run parallel to the modal sensitivity lines. In figure 3-4, we provide plots of 

the modal sensitivity Q(g;, e2) superposed on the projections of these branch points on 

the axis of real disorder for all three modes of the system. There are two square-root 

branches which are plotted in figure 3-4 and these lines run parallel to the ridges. We 

will name the one on the left as branch Bl and the one on the right branch B2. The 
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Figure 3-4: Modal Sensitivity Q{q{, e2) for three pendula. 
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cube-root strength branch points are marked on the same figure. They are located 

close to the origin. The zone close to the cube-root branch point is a zone where 

all three modes have significant sensitivity. We can see that the modal sensitivity 

contours vary in magnitude over different regions of the graph. We have not marked 

any magnitudes to prevent the figures from being too crowded but it is sufficient to 

note that zones where there is significant clustering of the sensitivity contours are 

also zones where there is increased sensitivity while zones where the contours are well 

spaced are also zones where there is reduced sensitivity. This variation is because the 

imaginary part of the branch point varies in magnitude over different zones of the 

graph. In zones where the imaginary part is large, we have low sensitivity while in 

zones where the imaginary part is small, we have large sensitivity. Similar figures can 

be obtained for Q(qi, £i) and are plotted in Appendix C. 

The cube-root strength branch point occurs close to where the square-root strength 

branch point surfaces converge. In the case of the branch point lines drawn in figure 

3-4, if we had permitted ex to be complex, we would have seen actual intersection 

of the square-root branch surfaces for some special value of e\. The next question 

to be answered is which branch point is more important, the cube-root variety or 

the square-root variety, when both are close to each other ? In chapter 2, we have 

already seen that the square-root branch point is associated with two e^ splits in 

the eigenvector perturbation. Since the modal sensitivity is directly related to the 

square-root term, it is reasonable to conclude that only two modes show appreciable 

sensitivity. Eigenvector perturbation expansions about the cube-root branch point 

have three modes which possess the ea dependence on disorder and hence in zones 

where the cube-root branch point effects are important, we would see three modes 

possessing large modal sensitivity. In the figure 3-4, we can see that close to the origin 

all three modes possess appreciable sensitivity. Hence it is unlikely the square-root 

branch point is important in its effects close to the origin since we should expect to 

see significant modal sensitivity for only two modes. 

We confirm our suspicions by using Jordan block expansion predictions at three 

points PI, P2 and F3 which lie on the line ex = 0 and represent points with grad- 
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(a) Good cube root expansion and bad square root expansion. 

o-    '  o-     -^~ 

:°—i—-   ~lrp—: 

o-    *  °; _ 
_i  

(b) Transition zone between areas where cube-root begins to perform badly and 
square-root branch point expansions begins to perform well. 

■5-1-- 

0r 

-1t- 

1 • 

0:- 

0 

0- 

(c) Bad cube root expansion and good square root expansion. 

1 1f 

o 

2 01- 
=■ i 

'•"' -t ■— 

Oh 

0 

°t : 
-it- -it- 

Figure 3-5- Gradual transition from cube-root branch point to square root 
branch point. Point PI : e1 = .0043, e2 = -.01186. (a) : Jordan block size 
three expansion about (a). Jordan block size two expansion about ex - .0043,e2 - 
-.01186 -r .016161. Point P2 : ex = .02, e2 = -.003335576. (b) : Jordan block size 
three expansion about (a). Jordan block size two expansion about ^ = .02,e2 - 
-.003335576 + .0112921*. Point P3 : d = .06, e2 = -.00018283. (c) : Jordan block 
size three expansion about (a). Jordan block size two expansion about c = .06, e2 = 
-.000182S3 -i- .004099z. (□: Exact Eigenvector, o : Predicted Eigenvector/; 
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0 
Real Part 

Figure 3-6: Variation of magnitude of Imag(ei) with e2 for square-root branch point 
curve, o: Imaginary part of projection of cube-root branch point 

ually increasing distances from the origin. These are shown in figure 3-5. Point PI 

(ei = .0043, e2 = -.01186) is a point where the Jordan block size three expansion 

about branch point (a) (3-5 a) is effective while the Jordan block size two expansion 

about (ex = .0043, e2 - -.01186 + .01616?) is ineffective. The Jordan block size two 

expansion blows up because of the close proximity of the higher order branch point. 

The point P2 (ei = .02, e2 = -.003335576) is a point in between where the Jordan 

block size three expansion (fig. 3-5 b) is beginning to function poorly while the size 

two expansion about (d = .02, e2 = -.003335576 + .0112921z) is performing ade- 

quately. The point 3 (ei = .06, e2 = -.00018283) is a point where the Jordan block 

size 3 expansion (fig. 3-5 c) is inadequate while the Jordan block size two expansion 

about (ex = .06, e2 = -.00018283 + .004099i) performs well indicating that only the 

effects of the square-root branch point is important in this zone of the parameter 

space. So the broad conclusion is that in a zone of the parameter space where two 

different order branch points are present, the higher order branch point predominates 

in its effects. 

Some more interesting features of the branch point geometry close to the cube-root 
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branch point surface becomes obvious if we examine the imaginary parts associated 

with the square-root and cube-root branch points. We plot imaginary part of the 

square root branch point curve involving complex e\ as a function of the real coordi- 

nate e2 in figure 3-6. We superpose the projections of the positions of the three root 

coalescence on this plot. Clearly the large changes in the magnitude of the imaginary 

part occur close to the three root coalescence. Also the three root coalescence has 

a larger magnitude of the imaginary part than the square-root branch point. In the 

vicinity of the cube-root branch point the imaginary part of the square root branch 

point actually increases in magnitude while always being less in magnitude than that 

of the cube-root branch point. However, the effects of the cube-root would predom- 

inate close to the cube-root because a cube-root dependence is far stronger than a 

square-root dependence. 

Let us say that we are examining a square root branch point with complex e2. In 

figure 3-4, we only considered real ex while evaluating the square-root branch point 

lines, but this was not necessary, and ex could be a complex but free parameter 

which we may vary. We now have the three eigenvalues with two eigenvalues being 

coincident along this surface. The box indicates the coincident eigenvalues. 

(Ai,A2 ,A3) (3.7) 

Let us say we have another square-root branch point line with complex ex and A 

being the unknowns obtained from solving equations 3-1 and 3-2. Two eigenvalues 

are coincident again but not the same two that we saw coincident earlier in figure 3-4. 

(Ai, A2,A3 ) (3.8) 

There is only one situation in which we could obtain a three root coalescence. That 

would occur if these two square-root branch point surfaces cross and the eigenvalues 

would now be of the form shown below : 

(|Ai,A2,A3[) (3.9) 
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Scfaennnc Two Parameter Geometry 

\ 
\ 

si : Two root coaiescence line 

s2 : Two root coaiescence line 

c : Three root coaiescence point 

Figure 3-7: Schematic diagram of branch point surfaces for two parameter system 

The obvious implication is that the two root coalescence is a subset of the three 

root coalescence since a two root coalesence is a necessary condition for a two root 

coaiescence to occur. We have noted that a square-root branch point can only be 

determined by solving two equations for eigenvalues coalescence. One of the disorder 

parameters can be varied arbitrarily over the entire field of complex numbers to 

generate a two dimensional surfacei'the real and imaginary parts can be taken as 

independent coordinates). This surface is said to have codimension two since we need 

two equations to define the surface. We have two two-dimensional square-root branch 

point tvpe surfaces crossing to generate a three root coalescence point. If ?:e restrict 

ourselves so that one of the parameter values is real and the other complex, we obtain 

loci for the branch points which approach each other but do not cross as in figure 3-4. 

A schematic diagram of the distribution of these branch points is provided in figure 

3-7 for a two parameter system similar to the type we saw for three pendula. 

We now examine the square-root branch point lines for the three penduia system. 

We have already noted that there are three cube-root branch points (ai. (b). and 

(c).   Instead of permitting ix to be pure real, we specify that tx assume the same 

84 



(a) 

0.05 

-0.1 
-0.05    -0.04    -0.03    -0.02 -0.01 0 0.01 

Disorder 
0.02      0.03      0.04      0.05 

(b) 

x1(T 
10, r 

o 
-a 
o 

o 
<H   0 

-5' 

."   * 

-0.05    -0.04    -43.03    .-0.02    -0.01 0        0.01       0.02      0.03      0.04      0.05 
Disorder 

Figure 3-8: (a) : Real(e2) versus Imaginary^), (b) : Imag(e2) versus Imaginary (ei) 
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Branch Point <n (■2 

(a) 
(b) 
(c) 

.0145 ± .0268z 

.0043 ± .0262z 

.0099 ± .0144i 

.0101 
-.0099 

-.0008+ .02832 

Table 3.1: Three Root Coalescences 

values as in figure 3-4 but with an imaginary part equal to that of cube-root branch 

point (a) ie .0268i. We are thus taking a section in the complex space through 

the cube-root branch point instead of restricting ourselves to real values of e\. We 

plot the real and imaginary parts of the complex coordinate e2 obtained by solving 

equations 3-1 and 3-2 with m=l, as a function of the real part of e\ in figures 3-8a 

and 3-8b. The various branch point lines can only cross at a point of three root 

coalescence. As described earlier, for a system of eigenvalues (Ai, A2, A3), one of the 

branch point lines corresponds to a case where two eigenvalues say Ai and A2 are 

equal while the the second branch point line corresponds to a case where the other 

two eigenvalues, say A2 and A3 are equal. A cube root branch exists if both of the 

real and imaginary parts of the various branch point lines cross each other. If only 

one or the other cross each other, we do not have a cube-root branch point and in 

fact nothing special can be attached to this phenomenon. We can clearly see there 

are only two coordinates at which this occurs. Cube-root branch points occur if 

Real(e2) — .01 and i?ea/(e2) ~ —.01. The imaginary part at the point of cross-over is 

zero for both branch points. Comparison with branch points which were calculated 

in Chapter 2 (and are presented again for ready reference in table 3-1) show that the 

the cube-root coalescence coordinates are indeed correct. 

We will see these features for larger systems which are dependent on many param- 

eters (ex,...,en_i). We have a hierarchy of surfaces. The higher order branch point 

surfaces are embedded in the lower order branch point surfaces. The square root type 

branch point surface can be obtained by solving two equations and by systematically 
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varying (n - 2) parameters to generate a surface of dimension 2(n - 1). We could 

select these surfaces in 2, "' , ways. Cube root branch point surfaces are generated 

wherever these square-root branch point surfaces intersect. We need three equations 

to determine these cube-root branch points. We can vary (n-3) parameters at a time 

and hence the cube-root branch point surface is of dimension 2(n-3). In general, nCm 

mth root branch point surfaces can be generated and these are of dimension 2(m - 1) 

and require m equations to be solved for the complex branch point coordinates. 

We next consider the modulus of the modal sensitivity given by 

Q(Qi) = \lQ{qu*i)2 + Q{qui2)2 

in figure 3-9(Modes 1-3). Here the contributions of all the partial modal derivatives 

have been accounted for and we can expect these contours to be similar to the localiza- 

tion factor contours because they reflect the integral of the modal sensitivity. We next 

plot the localization factor as a function of disorder over the same numerical range 

in figure 3-10(Modes 1-3). There is a remarkable similarity between the contour lines 

for modulus of modal sensitivity(3-9 Modes 1-3) and localization factor(3-10 Modes 

1-3). The asymmetry in the localization factor curves appear to be directly related 

to the asymmetric position of the three root coalescence points, the projections of 

which have been marked on the graph. 

We examine the mode shapes at points a and b on figure 3-4b. At (b), we are 

close to a two root coalescence curve and two modes have appreciable amplitudes. At 

(a), we are far from all branch points and all modes are heavily localized. These three 

modes are shown in figures 3-11 (a-c) where we show Jordan block size two expansion 

predictions and in figure 3-11 (d-f) where we show MPM predictions at point (a). 

Clearly the MPM performs better because of the point being distant from all branch 

points while the Jordan block size two expansion prediction is poor. In figure 3-11 

(g-i), we show predictions using the Jordan block expansion for point (b). Clearly the 

Jordan block expansion does provide good predictions because of the proximity to the 

square-root branch point. The MPM blows up. The important feature here is that (a) 
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and (b) are disorder configurations possessing the same mean square disorder. Inspite 

of that, we see that (b) corresponds to nonlocalized modes whereas (a) corresponds to 

localized modes. This provides us with a good explanation of Hodges and Woodhouses 

discovery that statistically similar combinations of disorder yield significantly different 

levels of localization. The answer is that rather than any absolute magnitudes of 

disorder, the distance from that point in the parameter space to the closest branch 

point surface is the crucial factor in deciding the amount of localization seen in the 

modes. We have looked at a simple example here to explain this phenomenon but it is 

true for arbitrarily sized systems. Of course, we would have to determine the closest 

eigenvalue coalescences of all orders to find out the number of oscillators which have 

significant amplitude and the number of modes which are not localized. 

It is clear there are regions of increased localization on these maps of the parameter 

space. In figure 3-12 a-r. we provide plots of variation of eigenvectors along the 

two square-root branches in figure 3-4 (a-c). The branch point lines are lines along 

which the modes display large sensitivity but have not undergone sufficient change 

to look localized. Evidently, the branch point lines are lines where it is sub-optimal 

to search for localization given that all the modes in figure 3-12 a-i look reasonably 

extended. We see in figures 3-12a through 3-12c that mode 1 (figure 3-12a) is localized 

and mode 2 and 3 (figures 3-12b through 3-12c) have appreciable amplitude on two 

oscillators. In figures 3-12d through 3-12f, we are actually in a zone where the effects 

of three root coalescence are felt and although we have used coordinates for a two 

root coalescence, we are in reality seeing the effects of the three root coalecence. 

Further down the branch in figures 3-12g through 3-12i, we see that the modes have 

undergone appreciable change in relation to the modes in figure 3-12a through 3-12c. 

Now. the modes 2 and 3 (figures 3-12h and 3-12i) are extended with appreciable 

amplitude on two oscillators while mode 1 (figure 3-12g) is localized. For much of 

the distance along this line there was relatively little change in the mode but owing 

to the three root coalescence, there was a violent change in the mode whence the 

mode remained relatively unchanged for much of the second half of the branch point 

line. The main difference between the modes in figures 3-12a through 3-12c and those 
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in 3-12g through 3-12i is that the cube-root branch point has caused the modes to 

switch the oscillators on which there were significant amplitudes. Thus modes in 

figures 3-12b and 3-12c had significant amplitudes on the first and second oscillators 

while modes in figures 3-12h and 3-12i had significant amplitudes on the first and 

third oscillators. Modes a and g were localized but with the oscillator with large 

amplitude being the third and second respectively. There is an analogy existing with 

the curve veering (Perkins and Mote [25]) seen earlier in the manner of eigenvector 

exchange which occurs, although here the veering is that associated with the square- 

root branch point curve. Modes 3-12j through 3-12r represent modes at points on Bl 

corresponding to those in figures 3-12a through 3-12i on the branch B2. Modes in 

figures 3-12a through 3-12c and those in figures 3-12p through 3-12r on the one hand 

and those in figures 3-12g through 3-121 and in figures 3-12j through 3-121 on the 

other are the same but shuffled around indicating that interchange of mode shapes 

has occurred along these branch point loci. This feature explains another aspect of 

the asymmetry seen in figure 3-10 (Modes 1-3) for the localization factors for the three 

modes of the three pendula system. The localization factors of mode 1 form a triangle 

while those of mode 3 appear to also form a triangle but with the vertices of the 

triangle rotated around. The reason is that during the veering the modes associated 

with the branch point lines have been exchanged and the localization factor contours 

reflect this fact. 

Please see Appendix C for square-root type branch point surfaces for a four pen- 

dula system. 

3.4    Optimal directions to maximize localization 

The asymptotes of the branch point surfaces appear to be straight lines. The bisectors 

between the asymptotes of the square-root type branch point surfaces appear to be 

zones of increased localization in figure 3-10(Modes 1-3). Any search to determine 

optimal combinations of disorder for localization must proceed in an initial direction 

along this bisector. Some bisectors appear to be more conducive to localization than 
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Mode 2 

Figure 3-13: Optimal Search Directions to maximize localization superposed on lo- 
calization factor contours for mode 2: '-' : Directions al-a6. 

others. It is not clear what precise criterion is to be used to determine which of these 

bisectors ensures more localization. The asymptotes are obtained by obtaining square- 

root branch point solutions for equations 3-1 and 3-2 for the asymptotic values of the 

disorder i.e. t\ —> co,C\ ->■ — 1 with complex e2 and e2 -> oo, e2 —> — 1. with complex 

ei. In figure 3-13. we provide plots of the bisectors to the asymptotes superposed 

on the contour lines for mode 2 of the three pendula system. Since all the two root 

coalescences cause interaction of this mode with the other modes, this mode is the 

least localized of the three modes. It is fairly obvious that the localization is maximum 

along these bisectors and the localization is more in some of these directions than the 

others. For example, directions a3 and a6 offer more localization for the same mean 

square disorder than the other directions. There are no consistent conditions which 

can be used to determine which of these directions offer the most localization. But 

it is of interest that the optimal direction a6 actually lies along the direction away 

from the three root coalescence, whereas the direction a3 lies in the direction of a 

cube-root branch point. Between a3 and a6, a6 provides more localization for the 

same mean square disorder. 
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These general trends of the optimal directions being along the bisector between 

adjacent square-root branch point surfaces is true for systems with more disorder 

parameters. However, instead of square-root branch point lines, we would be dealing 

with a branch point surface in the n dimensional space. We would again have to deter- 

mine the bisectors between adjacent square-root branch point surfaces to determine 

the optimal directions for maximizing localization. 

3.5     Quantifying difference between two and three 

root coalescences. 

The main difference between the two and three root coalescence so far has been in the 

number of modes showing sensitivity to applied perturbation. Another quantitative 

approach to show this difference is by using perturbation method predictions. In 

short if we are close to a cube root branch point, a cube-root perturbation expansion 

would provide good predictions while if we are close to a square-root branch point a 

square-root expansion would work well. 

In figure 3-14, we show predictions of the eigenvalue loci as we traverse the contour 

ei = 0. As we start from e2 = —-05, we first encounter a square-root branch point 

and then two cube-root branch points and finally a square-root branch point before 

we approach e2 = .05. Jordan block size two predictions of the eigenvalue loci are 

shown in figure 3-14 a. In figure 3-14 b, we show Jordan block size three predictions 

of the eigenvalue loci about branch point (b). In figure 3-14c we show Jordan block 

size three prediction of the eigenvalue loci for the expansion about branch point (a). 

Finally we show the Jordan block two expansion prediction for eigenvalue loci close to 

the square-root branch point of coordinates. The expansions close to the square-root 

branch points appear to be associated with a veering of the eigenvalue loci as predicted 

in Triantafyllou and Triantafyllou [39]. The intermediate cube-root branch points are 

very closely spaced hence each cube root expansions works well over a short range 

before failing. These also happen to be the zone closest to the origin. The square-root 
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ei £2 £3 U £5 

-.0218 - .0781i -.0941-.0816i -.1126 + .Ü339i -.0483 + .0555i -.1397- .02731 i 

Table 3.2: Six Root Coalescences 

branch points influence sensitivity for larger disorder. This confirms the general trend 

we observed that the strongest (nth root) branch point occurs closest to the origin. 

The lower order branch points can occur for larger values of disorder and can also 

possess smaller imaginary parts. Depending on the trade-off between the magnitude 

of the imaginary part and the strength, we could get lesser or greater sensitivity for 

the lower order branch point relative to the higher order branch points. 

3.6    Conflicting effects of strength and distance 

from the real axis : Trends and Examples 

We illustrate this point with a very interesting example i.e. a system of six coupled 

pendula. We consider an extreme case where the disorder is of the order of 50% of 

the length to highlight the problem in a clearer fashion. Consider two possible cases 

viz. the first being one where we have the effects of a six root coalescence being im- 

portant and the second where we have the effects of two three root coalescences being 

important. The complex coordinates of one of the complex branch point coordinates 

is shown in table 3-2. 

We show the modes of the six pendula system with the six root coalescence being 

important. The modes are those corresponding to that of the periodic state. These 

are shown in figures 3-15 a-f. The case corresponding to the system where the effects 

of two three root coalescences are important is next discussed. Such a system is seen 

in a system of six pendula with three of them having a length of two units and the 

other three having a length of one unit.   The disorder combination for the special 
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Figure 3-17:   Six Pendula System :   Modal Sensitivity for six root coalescence 
Q{qi,e5) where 1 < i < n. 
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el      €2      £3                    £4                                          €5 

0     0     0    1.0155-.1058 i    1.000796+.00000693i 

Table 3.3: Three Root Coalescence for configuration 1 

configuration associated with two three root coalescences is as follows : 

^o = ei = e2 = 1. e3 = e4 = e5 = 0 

. The modes are shown in figures 3-16 a-f. There are two sets of modes , group (a) 

and group (b). The former has significant amplitudes on the first three pendula while 

the latter has significant amplitude on the last three pendula. We plot the modal 

sensitivity as a function of e5 for the six root coalescence problem in figure 3-17. 

We consider the modal sensitivity for the three root coalescence as a function of 

e0 for the group (a) modes and as a function of e5 for the group (b) modes. These 

are plotted in figure 3-16. Note the peak sensitivity of the group (a) set of modes 

is much lower than that for the six root coalescence. The peak sensitivity for the 

group (b) set of modes is higher than that for the group (a) set of modes but less 

than the six root coalescence. Note also the group (a) set of modes appear to be 

completely decoupled from the group (b) set of modes. In other words, the group (a) 

set of modes are not sensitive to variations in e5 and the group (b) set of modes are 

not sensitive to variations in e0- We provide the complex coordinates of one of the 

branch points for this configuration in table 3-3. The magnitudes of the imaginary 

parts for the three root coalescences in table 3-3 are much smaller than those for the 

coordinates of the six root coalescence in table 3-2. 

We now consider a second configuration where the first three modes have a length 

of .5 units while the last three pendula have a length of 1 unit. The modal sensitivities 
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Figure 3-18: Modal Sensitivity for the three root coalescences. Group (a) : O(qi,e0) 
and Group (b) : Q(qi:e5) where 1 < i < n. 
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Figure 3-19: Modal Sensitivity for the three root coalescences. Group (a): Q(qi,e0) 
and Group (b): Q{qt.^), where 1 < i < n. 
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6l      £2       €3                            64                                                         €5 

0     0    -.5   -.501143-.0065258 i   -.50003+.000000108725 i 

Table 3.4: Three Root Coalescence 

are plotted as a function of CQ and e5 in figure 3-19(a-b). The configuration is as below 

e0 = £1 = (-2 = --5, e3 = e4=e5 = 0 

. Only three modes display appreciable sensitivity. Previously, the group (a) set of 

modes displayed almost no sensitivity relative to the six root coalescence while the 

group (b) set of modes displayed lower but comparable sensitivity. Now the group (a) 

set of modes display slightly larger sensitivity than the six root coalescence while the 

group (b) set of modes display the same sensitivity as earlier. The obvious conclusion 

would be one of the three root coalescences has moved as we altered the length of 

the pendula. In table 3-3, we provide the complex coordinates of the three root 

coalescence branch point corresponding to the new configuration. The imaginary 

parts of the complex coordinates have clearly decreased. 

In the first case(figure 3-19a) the three root coalescence was relatively far away 

from the real disorder axis and the modal sensitivity was very low. In the second case 

(figure 3-19b) the three root coalescence was relatively very close to the real disorder 

axis and the modal sensitivity was comparable with the six root coalescence even 

though the dependence on the disorder was a third root dependence as opposed to 

the sixth root dependence we saw earlier. Of course, the imaginary components of 

the six root coalescence were fairly large relative to the imaginary parts seen for the 

three root coalescences but the sixth root dependence on the disorder was responsible 

for the relatively large sensitivity. 
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3.7    Conclusions 

We provide numerical confirmation of the asymptotic results of Triantafyllou and 

Triantafyllou. Some broad trends in the numerical investigation of this problem were 

detected. The "strongest" branch point, corresponding to an n th root branch point 

for n pendula occurred, typically, for values of small disorder and were fixed and 

relatively further away from the real axis. The weaker branch points correspond- 

ing to an mth root (where m < n) dependence of modes on disorder were "mov- 

able" branch points and typically had larger imaginary parts as they approached the 

stronger branch point. For larger values of disorder the weaker (m th root) branch 

points actually had sufficiently small imaginary parts to result in modal sensitivities 

comparable to or greater than those for the stronger branch points, but would only 

affect m modes. A form of curve veering was observed where the square-root branch 

point loci for a three pendula problem were seen to exchange loci as the branch point 

approached each other before veering away. The bisectors to adjacent square-root 

branch point surfaces were found to be lines along which localization was maximum. 

Among these directions, one of them actually was the most optimal direction to max- 

imize localization but there does not appear to be any quantitative means to identify 

the most optimal direction. 
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Chapter 4 

Optimal Mode Localization 

4.1     Introduction 

Mode Localization offers very exciting possibilities for reducing vibration transmission 

in periodic structures like bridges, moorings, and offshore structures. The problem 

with these structures is that the excitation frequency which causes vibrations is not 

monochromatic. Conventional methods have focused on using anti-resonances to con- 

fine vibrations about the source. But if the exciting source has a frequency spectrum 

with the excitation frequencies spread over a broad range relative to the bandwidth 

of the resonances of the structure, we would be unable to achieve vibration confine- 

ment. The importance of mode localization is that even if we excite the structure at 

resonance, the vibration is still confined close to the source. There have been some 

situations where this method has been applied successfully. Cornwell and Bendik- 

sen [9] has commented about the deliberate mistuning of blade assemblies to ensure 

some level of localization in turbines. However the disorder parameter selection was 

essentially a trial and error selection. There is a need to develop a systematic method 

for parameter selection while using localization in vibration isolation. This however 

required a mature understanding of modal sensitivity which was only acquired in the 

previous chapter. 

Introducing disorder into an otherwise periodic structure results in manufacturing 

and aesthetic problems.   Manufacturing problems are related to the fact that it is 
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expensive to manufacture nonstandard parts. There is also a matter of aesthetic 

beauty in that public utilities like bridges would look ugly by having very irregular 

spans. We have already observed that there exists a mapping from the disorder 

parameter space to the eigenvalues determined by the solution to the characteristic 

polynomial. This mapping divides the parameter space into zones of higher and lower 

order localization. The transition from periodic to localized modes occurs very rapidly 

in a small range of parameters close to the solutions of the bifurcation equations. 

Hence we can accommodate our requirements of having as little disorder as possible 

while trying to maximize localization with this prior knowledge of the behavior of 

systems which exhibit localization. 

4.2    Work done in this chapter 

In this chapter, we study two optimization problems. The first problem, is that of 

parameter selection to ensure all the modes are localized to some minimum level 

while ensuring the sum of the squares of the disorder was a minimum. The second 

problem is that of maximizing localization while ensuring that the sum of the squares 

of the disorder is some specified amount. Numerical tests on small systems of pendula 

indicated that the distribution of optima is such that the optima are along lines of 

maximum distance from the lines of two root coalescence. Also, the convergence 

basins of each optimum are bounded by different lines of two root coalescence. An 

algorithm is suggested for tracking down all the optima with a view to determining the 

global optimum using this knowledge of the location of the optima. Since there was an 

exponential growth of optima and computational effort with the number of disorder 

parameters, a statistical analysis was performed to show that for small systems of 

pendula (two to six pendula) , it was sufficient to sample only a few optima to obtain 

a good estimate of the global optimum. Special optimal solutions were also examined. 
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4.3    Statement of the Problem 

In this chapter, we will answer two fundamental questions. How do we select parame- 

ters (disorder) for the system so as to ensure a certain minimum level of localization? 

Alternately, if the constraint being placed on the system is that the disorder in the 

system has some mean value, the obvious question would be how do we ensure opti- 

mum selection of parameters to maximize the localization seen in the system? 

4.3.1    Problem 1  .-Minimum Disorder to attain Minimum 

Level of Localization 

We use the same definition for localization factor used earlier. Consider a generic 

system of n coupled pendula with (n — 1) possible disorder units e,-. We then state 

the optimization problem to ensure all the modes have a minimum localization factor. 

Minimize 

t=i 

subject to the constraints 

7i > b (4.2) 

for 1 < i < n, where b is some minimum value of the localization factor as defined in 

appendix A. 

4.3.2    Problem 2:   Maximize Localization for given Mean 

Disorder 

Maximize 

with the constraint 
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i=n— 1 

£ (*?) = ^(^)2 (4-4) 
i=l 

Here 6 is the mean desired disorder. If we need 5% disorder, we would b = .05. 

4.3.3    Problem 1: Objective Function 

We now state the optimization problem in terms of optimization theory. 

f(et, Xt, a) = lz\e?) + £ A,(7i - b - <*) (4.5) 
i=i t=i 

The objective function is used as defined earlier. The variables X{ are Lagrange 

Multipliers and the variables ct are slack variables used to implement the inequality 

constraints. Note the increase of the number of unknowns from (n - 1) variables et- 

to 3n - 1 unknowns including n additional unknowns in the Lagrange multipliers A* 

and n unknowns in the form of the slack variables c{. The optimal solution exists as 

the solution to the system of equations 

n—l j=n 

Ki<n-l 

n < i < 2n — 1. 

i = E(2£,) + E^ = 0 (4.6) 
Utl 1=1 7 = 1    ^ 

f=7,-^c? = 0 (4.7) 
M 

-±- = Cl\i = 0 (4.8) 

2n < i < 3n — 1. 

This is the complete statement of the problem. The equations are coupled, non- 

linear algebraic equations, and we will have to use some iterative method to obtain 

the solution. Note there is a total of 3n - 1 equations in 3n - 1 unknowns. 

Note the following feature about the equations. The third set of equations, in- 

volves the product of the slack variable and Lagrange multiplier.   The Lagrange 
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multiplier is zero when the constraint is not enforced and 0(1) when the constraint is 

enforced. The slack variable is typically zero when the constraint is enforced and of 

signficiant magnitude when not enforced. Together, they satisfy an "or" relationship. 

4.3.4    Problem 2: Objective Function 

We now state the objective function required for the second problem. 

/(^,A) = ,f i + A^Vf-ni) (4.9) 
t=i '* j=i 

The conditions for optimal solutions to exist give 

lr = -E3fr + A5:<*.> = ° (4-10) 

These equations (4-10) number (n — 1) altogether. 

df     l=n~l 

fx=   £  £?-nb = 0 (4.11) 

Along with equations 4-10, we have n equations altogether. Please refer to Appendix 

D for a brief review of the solution techniques used for the equations. 

4.4    Distribution of Optimal Solutions 

We shall in this section study the optimal solutions of the objective function 1 (equa- 

tion 4-5). 

As a preliminary investigation of the problem, we apply these optimization tech- 

niques to a system of three pendula to determine the precise structure and distri- 

bution of these optima. We first use the steepest descent method with a series of 

initial guesses ranging over -.05 < ex < .05 and -.05 < e2 < .05. We focus on both 

objective functions. This would enable us to determine all the optima and determine 

the nature of the distribution of these optima in the two parameter space. The results 

of this study are as follows. There are six local optima shown in figure 4-1. They are 
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Eigenvector 2 

Figure 4-1: Distribution of Local Optima for System of Three Pendula : Objective 
Function 1 
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marked on the localization factor contour map for mode two which is the least local- 

ized mode. Interestingly, each of these optima lie roughly on the bisector between the 

lines of two root coalescence. In some sense these optima are situated on the points 

of maximum distance from the two root coalescence lines. We specified a minimum 

localization factor of 7 = 2. As we increase the minimum localization factor, we will 

see the optimal point move outward. The optimal solution does not necessarily lie 

exactly on the 7 = 2 curve, because there are three modes and it could be that one of 

the other modes is satisfying the condition for the minimum localization factor value. 

We next look at the distribution of optima connected with the objective function 

2. These are shown in figure 4-2 superposed on the localization factor plot. These 

optima are those that satisfy the constraint that the mean square disorder is 5%. All 

the optima lie on a circle however because of the constraint that the mean square 

disorder is 5%. They also again seem to lie on the line of maximum distance from 

the branch point curve. 

We now perform a convergence study on the steepest descent method applied to 

this problem. We systematically cover the entire range of parameters —.3 < ex, e2, < .3 

with guesses ranging over a grid of width .05. The convergence basin for each optima 

is that region of space which is demarcated by the two root coalescence lines and is 

shown in figure 4-3. There are six symbols on the graph representing each one of the 

six final solutions. Each symbol represents the final solution for an initial guess at the 

point in question. Those initial guesses which were positioned on or close to the two 

root coalescence lines resulted in final solutions which were far away from their initial 

guess and did not stay within the quadrant bounded by the two root coalescence lines. 

This was because of the local minima associated with the localization factor in those 

regions of the parameter space. 

Three facts emerged from this study. There exist multiple optima. These op- 

tima are in quadrants of the space separated by the two root coalescence lines. The 

convergence basins are roughly the quadrants carved out in this space by the lines 

of two root coalescence. Initial guesses in the zones of large sensitivity however do 

not result in final solutions which are close to the initial guess. This is because the 
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eigenvector 2 

Figure 4-2: Distribution of Local Optima for System of Three Pendula : Objective 
Function 2 
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iterated solution tends to shoot off far away from the initial guess due to the large 

change of gradients and the discontinuities associated with the absolute value in the 

localization factor definition, in this zone of the parameter space. 

4.5    Development of an Algorithm to determine 

the Global Minimum 

We use the knowledge of these optima gained from our preliminary analysis to develop 

an algorithm to determine the global minimum for objective function one. 

Stage 1 : Identification of the quadrants: The n dimensional space is divided 

into n quadrants by the two root coalescence lines. The asymptotic values of these 

two root coalescence surfaces can be used to demarcate the parameter space into 

the different convergence zones. The asymptotic values that can be assumed by the 

disorder parameter e; are —1 and oo. We systematically solve the two root coalescence 

equations for asymptotic values of the branch point surfaces. Direction cosines of these 

asymptotically determined points in the branch point surface are known. 

Stage 2 : Initial search direction: We have already seen for the three pendulum 

model that the bisector to these asymptotic two root coalescence points for the least 

localized mode passes close to the optimal solution. Hence for the n dimensional 

problem, the logical procedure is to first determine the least localized mode and 

then proceed along the bisector to the asymptotic points on the two root coalescence 

surface seeking to minimize the function (7mi„ — b)2 where b is the specified level 

of localization for the system and jmin is the localization factor associated with the 

least localized mode. One issue remains. How do we identify the least localized mode 

in the direction of search. We do it by taking a big initial step in the direction of 

minimization and determining the least localized mode. In that direction of search, 

it would in general be correct to assume that is the least localized mode. We used 

the method of golden section for the minimization procedure (See Press et al. [33]). 

Application of this stage would yield an estimate for the disorder which would be 
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fairly close to the actual solution and lying in the convergence basin for this solution 

using the Steepest Descent technique. 

One issue remains. The bisector to the asymptotic branch point surface should 

in general lead us to the correct estimate of the solution. However, in multiple 

dimensions, we are handicapped by the fact that while we have a multidimensional 

asymptotic surface in this space, we possess the directions of only isolated points on 

these surfaces. Evaluating bisectors of any two of these points would in general lead us 

to the correct solution if the points are on adjacent surfaces. If they are on the same 

surface or on two surfaces separated by another surface, we have a search direction 

which would give us an estimate of the solution which need not be meaningful. This 

is a shortcoming of this method. We generate a number of points which need not 

provide us with a correct estimate of the solution. See figure 4-4 for examples. In 

figure 4-4, a, b and c are asymptotic points on the surfaces of two root coalescence, 

dl and d2 are two examples of search directions along the bisectors. d2 is a valid 

search direction while dl is not valid as a search direction since it lies along a branch 

point surface. So any search along dl will essentially yield meaningless results and 

represents wasted effort. This is an inefficiency associated with this method. A useful 

rule of thumb was to calculate the angle bisector between any point and m of its 

closest neighbors. The value m could be taken to be half the total number of points. 

Alternately, a more time consuming method would be to compute bisectors between 

all the points calculated. This would heighten the labor involved. We opted for the 

latter approach to retain accuracy. 

Stage 3 : Usage of Steepest Descent Method to obtain a refined solution: 

We now use estimates from the second stage as initial guesses for the Steepest Descent 

method. Some of these initial guesses are fairly accurate estimates of the actual 

solution. Some are a result of searching initially in the wrong direction but may still 

provide us with a correct estimate of the solution. Some of these wrong initial guesses 

may not converge to the correct solution. Two initial points might converge to the 

same solution. A lot of book-keeping effort was needed to keep track of all these 

possibilities. 
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a,b,c : Asymptotic Positions on Two root coalescence surfaces. 

d i . d 2  : Directions between two asymptotic points on the branch point surface 

Figure 4-4: Examples of legal and illegal search directions 
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Distribution of Optimal Solutions (Four Psr.cula) 
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Optimum ei e2 C3 

al -.1071 -.1146 -.0345 
a2 -.1197 -.1004 -.0339 
a3 .0676 -.0563 .1158 
a4 .0511 -.0687 .1219 

Table 4.1: Coordinates of points al,a2,a3 and a4 

We now consider a system of four pendula. We examine the spatial distribution 

of optima. This is shown in figure 4-5. We have tracked down all the optima using 

the algorithm suggested earlier. One surprising fact seen in this study is that many 

of the optima lie close to each other. This is surprising. We examine the mode shapes 

associated with some of these optimal solutions. The coordinates are shown in table 

4-1. Note that (al) and (a2) are points sharing similar coordinates but when we plot 

their modes in figures 4-6 and 4-7, we find that they differ in the positions of the 

peak of the mode. This can be explained by referring to the Chapter 2 about the 

mode shapes close to the surfaces of two root coalescences. We can interpret these 

two optima to lie on either side of the two root coalescence line. Hence they are legal 

separate optima. However we can have situations in figures 4-8 and 4-9 where we 

have optima with almost similar coordinates. These are the optima (a3) and (a4). 

The mode shapes in these figures are also the same. These are not separate optima 

and they are actually caused by round off differences in the numerical solutions. 

However if our interest is the global optimum, the existence of these indistinguish- 

able optima is not that critical. We can obtain the optima by systematically tracking 

down all the optima and even if there exist multiple, non-distinguishable optima cor- 

responding to the global minimum, the error in round-off would be too small to be 

significant. The only issue at stake is the time taken to track down all optima. This 

can be very significant. 

We calculated the global optimum for a system of six pendula. We uncovered 1227 
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local optima when we counted only those optima which had a distance of le —06 from 

each other. The modes corresponding to the global optimum are shown in figure 4- 

10. It took us 22 hours of running time on the SPARC workstation of the Design 

Laboratory. 

4.6    Discussion of the performance of the algo- 

rithm 

The algorithm for determining the global optimum is slow in terms of absolute com- 

puter time. We cannot doubt that. However it is relevant to look at the problem in a 

different light. The question for examining the performance of the algorithm should 

be posed as : How does this algorithm compare to other alternatives for obtaining 

the global optimum for an optimization problem ? 

There are very few other alternatives. We are fortunate to possess an in depth 

knowledge of the distribution of global optima. The only other alternative in this con- 

text is the method of Simulated Annealing and this does not promise to track down 

the global optimum but only promises to do so with probability one with infinite 

sampling of the parameter space. If we have any special knowledge of the distribu- 

tion of optima, it is advisable to use that knowledge on tracking down all the optima. 

Computer run-times of one week are not uncommon when using the method of sim- 

ulated annealing in minimization procedures for parameter estimation and this does 

compare favorably. However there is no doubt that this method becomes impossibly 

slow in estimating the global optimum for a system of say 30 pendula. This is not 

a shortcoming of the method as much as the fact that we have a large number of 

optima and these run-times are necessary to track them all down systematically. 

In figure 4-11, we provide a plot of the variation of the number of optima with 

the number of pendula. We provide a semi-log plot. The data for these few points 

appear to fall on a straight line. Thus there appears to be an exponential increase in 

the number of optima with the number of pendula. Now, we should note that this 
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Variation of No. of Optima with No. of Penduia 
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Figure 4-11: Plot of Variation of Number of Optima with Number of Penduia 
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is only a trend and it would be reasonable but not absolutely correct to assume that 

this trend would continue for very large problems. Thus, if we denote the number of 

pendula by Np and the number of optima by Nop. 

Nop = e^^S+l.7702(NP-3) (412) 

An exponential growth of the number of optima implies that the reason for the 

computational effort increasing so rapidly with the number of pendula might be due 

to the number of optima rather than the time taken to uncover each optimum. 

4.6.1     Operation Count 

We provide an estimate of the operation count for large iV for confirming our suspi- 

cions of the growth rate in computational effort being due to the number of optima 

rather than the optimization algorithm itself. We will make a preliminary estimate 

assuming out initial search direction algorithm operates with 100% efficiency i.e. the 

initial direction results in a guess close to an optimum and the final solution is never 

duplicated during the entire process. 

• Number of pendula = Np 

• Number of disorder units n = Np — 1. 

Note the following operation counts : 

• Operations for determination of modes of a size N*N matrix: 0(3 -5N) using 

Q-Z algorithm. 

• Operations for LU back substitution for size TV * TV matrix : O(N). 

• Operations for LU decomposition for size N * N matrix : 0(N2). 

We now use this method to determine the operation count for the various algorithms. 

Approximations for large Np are introduced everywhere. The following operation 

counts are made per optimum solution The operation count for the initial search 

follows : 
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• Average Number of Iterations ~ 50(Np-l) 

• Number of function evaluation per iteration ~ 3 

Total average number of function evaluations = 150(Ap-1). Operations per function 

evaluation = 5Np + (2Np + l)Np ~ Np2. The second term is the effort for actual 

estimation of Np localization factors for each mode. Total number of operations ~ 

150JVp3. The Steepest Descent has the following significant statistics : 

• Maximum iterations = lOONp 

All the following calculations are for one iteration. On average, we can expect lONp 

iterations. Operations in determining the Jacobian : 2((3Arp — l)2 + 2Np) ~ Np2. 

The first Np2 denotes effort in calculating the localization factor and the other terms 

like Np denote the effort in other multiplications and divisions. The factor of two 

exists because the Jacobian is calculated by finite difference. Operations in LU de- 

composition: (3Np — l)2 ~ Np2. Operations in back substitution: 3Np — 1 ~ Np. 

Operations in linesearch per iterations: Np(3Np — l)2 ~ Np3. Summing and mul- 

tiplying by the number of iterations, we get total operation count to leading order 

~ Np4. 

There are Nop optima. Hence we get the total effort to be e^^8+i.7702(NP-3) Npi ~ 

e4.i258+i.7702(iVp-i) Thus the exponential term dominates the effort for computation. 

Any decrease in the number of optima sampled would make a significant reduction 

in compute time. 

We should now make a more complete analysis noting that we have not included 

the computational effort to calculate the initial search directions in this analysis. We 

note that we solve the two root coalescence equations for the Np pendula problem to 

determine the search directions. 

We will first determine the operation count for determining the two root coales- 

cence asymptotes. There are two asymptotic values e, = DO, —1. Thus we have a total 

of Nt'ot - 2Np~2(Np - 1) ~ ei-3863tfp aSymptotic values. Note Ntot is an exponential 

function of the number of pendula.  The effort for determining the solution can be 
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shown to grow as Np2. We calculate the bisectors to Ntot(Ntot — 1) combinations 

to get the same number of search directions. We thus get a total of 

~ Ntot + Ntot(Ntot - l)150Ay ~ e1-3863^^3 ~ e^^p 

to leading order which is also exponential. We should now note that a big fraction of 

these search directions results in meaningless results. 

So this analysis spells problems in the sense that the computational time grows 

exponentially with the number of pendula. However the next question is can we 

perhaps by sampling fewer of the optima still obtain a good estimate of the global 

optimum ? Obviously since there is an exponential growth in computational effort, if 

we examine a sufficiently large system(like say eighteen to twenty pendula), we will 

find it impossible to track down all the optima and then estimate the global optimum. 

But this reduced sampling would still make the method viable for small systems of two 

to ten pendula. The effect of any such analysis would be two-fold. Firstly, we would 

only have to sample a fraction of the the points for estimating the global optimum. 

Also, we would only be required to estimate a fraction of the asymptotic directions 

which are used to determine the initial guesses for the Gauss-Newton search. 

4.7    Statistical Analysis of the Distribution of Op- 

tima 

The first step in the analysis is to determine whether there is a sufficient spread in the 

optima to warrant determining all the optima and thence the global optima. Hence, 

it is instructive to examine the distribution of optimal solutions. In figure 4-12, we 

provide a histogram plot of the distribution of the Root Mean Square (RMS) disorders 

of the optimal solutions for six pendula. Note the following : 

• The distribution is one-tailed.(If there is a minimum, the distribution has to 

be one tailed). 
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Figure 4-12: RMS disorder distribution for local optima for six pendula system 
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• The distribution is skewed and has a long tail. 

For the sake of completeness, there is no doubt that we need to compute the global 

minimum. Is there a sufficiently large difference between the global optima which have 

the greatest mean square disorder(GMSD) and least mean square disorder(LMSD) 

to warrant the extra effort to calculate the optimum? We plot histograms of the 

distributions of mean square disorders which we obtained for systems of three, and 

four pendula in figures 4-13 and 4-14 also. In figure 4-12, we see clearly that there 

is a ratio of about five between the GMSD and LMSD. But there is a band close 

to the LMSD where most of the optima are located. In figure 4-13, we see that the 

band is still there close to the LMSD but the ratio between the GMSD and LMSD is 

about two. In figure 4-14, we see that the band is broad and is again located close to 

the LMSD but the ratio between the GMSD and LMSD is about two. So while the 

outliers in this distribution are well separated, the vast majority of the optima are 

closely spaced in a band close to the LMSD. If we ensure that any optimum we select 

falls in this band, we will obtain a very good selection of the optimal solution. So if 

the aim is to gain a good estimate of the global optimum rather than the exact global 

optimum, a good estimate would be obtained by sampling a few of these local optima 

and taking the least of that selection. We would then be no longer in the region of 

the long tail. The question to be answered is how many optima do we need to sample 

to ensure our estimate of the minimum falls in the band where most of these optima 

lie? 

This falls in the domain of order statistics. Let us consider the distribution of the 

RMS disorder D. Let it possess a probability density function /(£>). The cumulative 

density of the RMS disorder of these optimal solutions is F(D). Let us now attempt 

to determine the CDF Gm(dm) and PDF gm{dm) of the random variable denoted 

by dm = min(Di) where 1 < i < m. This random variable represents the global 

minimum of a sample of size m. 

We follow the development in Drake [13] and Lass and Gottlieb [21] where the 

CDF of the minimum of a sample of size m is given by 
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Gm(dm) = 1 - (1 - F{dm))m (4.13) 

and the PDF is given by 

gm(dm) = m{\ - F{dm))m-lf{dm) (4.14) 

Our illustrative example is the distribution of optima for the six pendula system. 

We fit a Weibull distribution to the data. The choice of this is based on two reasons. 

The first reason is that the Weibull distribution has historically been used on data for 

weakest link in a chain type problems where the chain with the minimum strength has 

to be identified. This is very parallel to this problem in that the statistic of interest 

is the minimum value of the parameter. The second reason is that the data is one 

tailed with a well defined cut-off and has a skew to the left. This can be handled 

by the Weibull distribution. We should note that there are other distributions which 

can capture the features of the data. The general results viz. that the minimum of a 

sample of a few of these optima provides a good estimate of the minimum, is however 

independent of the fitted distribution. 

4.7.1    The Weibull Distribution 

The three parameter distribution is defined by the parameters //, a and A. If D be the 

random variable which represents the RMS disorder of any optimal point, we define 

x = D-\i. The CDF is defined by 

FW(D. //, a, A) = 1 - errpH^^V) (4.15) 
a 

where JJL < a, -co < ß < oc. 0 < a, A. 

We determine if the data is indeed Weibull distributed by plotting the data on 

a double log paper.  In figure 4-15, we provide plots of the data without the cutoff 

jj, being incorporated into the model. Clearly, the data is skewed.  This is a test to 

determine if the data has a Weibull distribution with two parameters.   If the data 

134 



Data Plot on Weibull Pacer 

o 
en 
o 

* 

x 

x 

x 

-3L J 
2 -D -2 

Log(x) 
-1 

Figure 4-15: RMS data olot on Weibull graph without cutoff 

135 



Data Plot on Weibull Paper 

-6 -2 0 2 
Log(x-min(x)) 

Figure 4-16: RMS data plot on Weibull graph with cutoff 

136 



were distributed as a Weibull distribution of two parameters, we would have the data 

distributed as a straight line. In figure 4-16, we provide a plot with the cut-off ß. 

The cutoff n = min(D). The data are scattered along a straight line without a 

skew. This is a graphical test to determine whether we use a three parameter Weibull 

distribution. Since the data is scattered roughly in a straight line, we can conlude 

that it is correct to use a three parameter Weibull distribution The y-intercept of the 

plot is —Xlog(a) and the x intercept of the plot is a. However the graphical procedure 

is only used for a check and for actual estimation of the parameters we will use the 

maximum likelihood equations from Bury [8]. These equations are as follow : 

n J=n j=n Dx        D ■ 
- nlog(a) + £ log^) - £ -j-to/M) = 0 (4.16) 

EA^JIE^)-1 - \ = T-^l09{Dj) (4.17) 
3=1 j=l A U 

g = (Sg<0>-">V (4.18) n 

They can be easily solved numerically using some iterative method to obtain the 

solution. A plot of the Weibull Distribution is shown in figure 4-17. It recaptures 

the long tail and skewed nature of the original data. We now return to figures 4-13 

and 4-14. In both cases we see the same broad features of a skewed peak and a long 

tail. This is a check. We wish to establish beyond any doubt that the results of the 

statistical analysis are valid for different numbers of pendula by checking if a trend 

exists in smaller systems of pendula for the distribution of optima to remain similar 

regardless of the number of pendula. We will assume that the distribution obtained 

for six pendula is roughly what will be seen for larger systems of pendula. 

We now determine the 90% confidence interval for the minimum of samples of 

size m as m increases in size.  This analysis has however made some rather strong 

assumptions about the optimal solutions.   We assumed that the RMS disorders of- 

the optimal solutions are random variables which are independent of each other. In 

other words, selecting say the first three optima did not affect the distributions of 
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the other optima. This need not be correct, especially for small sample sizes but it 

is a reasonable assumption. In figure 4-18, we provide plots of the 90% confidence 

intervals for the minimum of a sample of size n as a function of the size of the sample. 

The 90% confidence interval is 

, , . ,—loq(.l). i 
(dn).9 = p + a( ^^)* (4.19) 

We see that sampling as few as 10% of the optima, provides us with a good 

estimate of the global optimum (within 2%). This on first sight appears contrary to 

our intuitive expectations viz. that in the histogram shown in figure 4-12 we needed 

to count at least 100 samples to ensure we were out of the tail of the distribution, and 

perhaps 800 before we were truly close to the global optimum.  However we should 

note that this is not true because we are making the assumption that a sample of 

size much smaller than the population would essentially reflect the distribution of the 

whole population. In other words, the chances are that we will not sample the optima 

in the order where we first cover all the optima in the tail and work our way to the 

global optimum. The question then is whether the numerical algorithm we are using 

also tracks down the optima in accordance with this assumption. We answer this by 

actually sampling the optima in the order in which the algorithm uncovered them and 

plotting the minimum of the sample as a function of sample size. This is superposed 

in figure 4-18 on the predicted confidence intervals calculated from the distribution. 

The actual data shows good agreement with the predictions from the distribution. 

Obviously, this is only one combination of the data. Our analysis indicates that 90% 

of the combinations of data would have global optima of samples of various sizes lying 

within the indicated curve. We have taken some pains to explain this concept because 

in our mind, this is an area which readily lends itself to misinterpretation of results. 

We note that when we examine a different system of pendula than n = 6, the 

parameters /i, a and A will change. The estimate requiring 10% of the optima to be 

sampled to obtain an estimate within 2% of the global optimum would continue to 

remain true if a and A do not vary too much. A is a parameter which determines the 
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extent of skew and a is a parameter which determines the spread of the distribution. 

As we have seen, over the histograms associated with different numbers of pendula, 

these characteristics remain reasonably constant over different numbers of pendula. 

Hence it is reasonable that this result would hold true for different numbers of pendula 

too. 

4.8    Optimal solutions for larger systems of pen- 

dula 

We provide optimal solutions for the system of ten coupled pendula for objective 

functions 1 and 2 (equations 4-5 and 4-9). We note that we have only found a local 

optimum for the system of ten pendula. The modes are plotted in figures 4-19 and 

4-20. Clearly, the modes associated with the objective function two, appear to have 

the same level of localization as those associated with the objective function one even 

though at first glance, the RMS disorder appears to be far larger for the first objective 

function. This is because we have not found the global optimum. However, the fact 

that two of the oscillators only have significant amplitude indicates that we are close 

to a two root coalescence surface in the 10 dimensional space. 

Note that we have not even tried to locate the global optimum because of the large 

requirements of computational time. Hence we have restricted ourselves to merely 

finding local optima which do satisfy the equations for optimality. 

In theory, we can apply this method to very large systems of coupled pendula. 

However, we found that the method of steepest descent converged to optimal solutions 

only for n < 15. For larger systems of coupled pendula. we actually found the method 

did not converge. This was initially mystifying. But we were successful in finding 

out the reason for the non-convergence of the method. In figure 4-21, we plot the 

localization factor as a function of disorder in the left-most pendulum for a three 

pendula system and thirty pendula system and in figure 4-22 we show the logarithm 

of the mode shape associated with a localized mode of a thirty pendula system. The 
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insidious effects of machine accuracy have resulted in the mode shape not having 

a clean exponential profile. The numerical noise would result in the localization 

factor fluctuating in a discontinuous manner when plotted as a function of disorder. 

All derivatives are evidently discontinuous and hence there would exist problems in 

finding an optimal solution. The reason is easy to understand. Consider a localized 

mode with localization factor 7. Consider the mode near its peak. On either side the 

amplitude decays as e"7n where n is the number of oscillators. If 7 = 2, for n=3, we 

should see a decay of e~6 away from the peak. If n = 30, we see a decay of e~60 away 

from the peak. Clearly, the decay would result in the modal amplitude being below 

resolution and the effects of roundoff would alter the computed localization factor 

since part of the mode shape would have the well defined exponential decay and 

part would have an amplitude which is below machine tolerance. During calculation 

of the localization factor, we usually only retain the part of the mode with the well 

defined decay for computing the localization factor. This became important for larger 

systems of coupled pendula. 

We also use our knowledge of the geometry of the system to search for special 

configurations using our knowledge of the geometry. We have seen in Chapter 3 

how in general if we clumped groups of pendula together to have the same disorder, 

they would be associated with eigenvalue coalescences of that size. We now look 

at a system of eight pendula and consider the pendula in groups of four and two. 

Thus for the first case we see the optimal solutions for a system of eight pendula in 

two groups of four (we are thus looking for solutions close to four root coalescence). 

These are shown in figure 4-23. In figure 4-24, we examine the optimal solutions 

for the case where we have four groups of two root coalescences. Again note that 

some of the modes appear to be subsets of the modes for the previous case. We have 

specified a minimum localization factor of 7 = 1.0 in these cases. For the case of 

the solution close to four root coalescence, we see the existence of mode shapes which 

have two sets of modes. Each of these sets of modes appear to be very similar to those 

associated with those of a system of four identical pendula. The first four modes are 

thus localized about this set of four pendula. The second set of modes are localized 

145 



*i 

J   3   r, 
i ! t A 

-I 

(») (b) 

+ 1 

-5-5-3 

(c) 
(d) 

+1 

Q ? 

+i 

0 9 

G-5-3- 

(e) 
(0 

^ 0- 0-3-5- 

-i i 

(x) (h) 

Figure 4-23: An Optimal Solution for the Eight Pendula Problem : Two groups of 
four root coalescences 

146 



»I, 

(») w 

♦ 1 

(c) w 

*[r 

^h 3 ? 

e-g 

(e) (0 

Q 
■a—j—ET 

•J 

(X) <w 

Figure 4-24: An Optimal Solution for the Eight Pendula Problem :  Four groups of 
two root coalescences 

147 



about the other four pendula. 

The second case involving four groups of two pendula is also very educative. If 

we consider only those oscillators of a mode which have significant amplitude, we 

now have modes similar to those of a set of two identical pendula. Four modes are 

localized about a group of two pendula at a time. The modes which are not localized 

about two pendula have the lowest value for the localization factor. 

4.9     Conclusions 

We have used nonlinear optimization techniques in this chapter to design structures 

which would minimize vibration transmission. Two problems were studied. The first 

problem was that of introducing disorder into the systems in such a fashion so as 

to ensure all modes were localized to some minimum level. The disorder would be 

selected so as to minimize the sum of squares of the disorder. The second problem 

studied was that of maximizing the localization in the system so that the sum of the 

squares of the disorder would be some specified amount. We examined the spatial 

distribution of the disorder in the first problem and found that the position of the 

branch point was the exclusive factor in determining this distribution. The optima 

were along the line of maximum distance from the two root coalescence lines. The 

two root coalescence lines also divided the space into the convergence basins for 

each optimum. In order to determine the global minimum, we provided a search 

procedure which utilized our knowledge of the distribution of optima to systematically 

track down all optima. We studied the spatial distribution of optima for the second 

objective function in reference to the branch point distribution and again found the 

distribution of minima to be along the line of maximum distance from the two root 

coalescence lines. We found the number of optima and the computational effort grew 

exponentially with the the number of disorder parameters. Hence for large problems 

(eighteen to twenty disorder parameters), computational effort would be too large 

to find the global optimum. However for smaller problems(two to ten problems), 

a statistical analysis was carried out to prove that sampling as few as 10% of the 
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optima would provide us with an estimate within 2% of the global optimum. We also 

examined a few larger systems of pendula and obtained locally optimal solutions and 

determined a few special optimal configurations. 
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Chapter 5 

Mode Localization as a passive 

vibration isolation device in a 

real-world structure 

5.1     Introduction 

We now examine the applications of localization for passive vibration isolation in a real 

world structure. We consider an oceanographic mooring system which has submerged 

buoys at regular intervals. The buoy is a symmetric structure and hence the wave 

induced excitation due to pressure loading would be vertical and the vibrations which 

would be excited would be inline, elastic excitations in the cable. We assume there 

will be no surge. 

We consider two types of mooring conditions. The first is the case where we have 

a fixed end condition at the lower end and the second is the case where we have a 

free end condition at the lower end. The first corresponds to a fixed mooring and the 

second to a drifting buoy-cable system. 
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5.2 Work done in this chapter 

We write the equtions of motion for the simplified model of the mooring system. 

We demonstrate that all harmonic modes of the structure can be localized by adding 

disorder. We demonstrate that localization of response can be obtained for typical sea 

states only for deep waters of 1000 - 4000m. It does not work for shallow waters(40- 

50m). We demonstrate that different boundary conditions(towed and moored) do not 

affect the degree of localization of response. 

5.3 Equations of Motion 

Consider the free body diagrams of sections of the cable shown in figure 5-2. The 

equations of motion for the stretch of cable between masses are 

, d2Ui d2Ui 

where s denotes the distance along the cable, t denotes time, ut denotes the inline 

displacement of the i th segment, E denotes the Youngs Modulus, A denotes the cross 

sectional area of the cable. 

The equations of motion for the intermediate masses is 

d2Ui dui dui+l     dui. 

where the mass rrij refers to the virtual mass of the j th buoy and bj is the damping 

associated with the buoy. Note 1 < j < N - 1 and 1 < i < N with j = i. During 

the analysis, we will assume that the primary source of drag is separation drag and 

will use standard drag coefficients. This is reasonable because, the dimensions of 

the subsurface buoy are such that viscous effects are insignificant compared to the 

separation induced drag. 

The boundary conditions are given by 

^(0) = 0 (5.3) 
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Un(nL)(0)=0 (5.4) 

For boundary condition 2, we modify the zero displacement condition at the lower 

end to result in 

d-^± = 0 (5.5) 
ox 

This is the condition for zero force at the lower end. Thus the boundary condition 

matrix would be slightly altered for this case. 

The equations given above can be solved using the transfer matrix formulation 

described in Pestel and Leckie [26]. 

5.4    Modes of Vibration of Periodic and Disor- 

dered Structure 

We consider an oceanographic mooring system as shown in figure 5-1. Free body 

diagrams of the mass and cable are shown in figure 5-2. Note that there is an infinite 

set of natural modes of the system, but we will restrict our attention to the lowest 

set of modes. 

We consider a system with four masses on it. The disorder introduced into the 

system is shown in table 5-1. They are placed 200 m apart as shown in table 5-2. 

The total length of the mooring is 1000 m.The disorder shown in table 5-1 was picked 

from a uniform distribution spread between —50 and +50 m(i.e. ±25%). The added 

mass for a sphere is obtained from Blevins ([4]). 

The first four modes of the periodic system are shown in figure 5-3. These modes 

have wavelengths of the order of the entire structure and form the fundamental set 

of modes. Others have half wavelengths of the order of the length of the distance 

between the masses. These form the first harmonic set of modes which are shown 

in figure 5-4. Still others have half wavelengths of the order of the half the distance 

between adjacent masses.   These form the second harmonic set of modes and are 
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Figure 5-1: Schematic Diagram of Oceanographic Mooring 
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(a) Free 3odv Diagram for Cable Element 
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Figure 5-2: Free Body Diagram of Parts of Mooring. u{ : Displacement of ith. 
segment. M : Virtual Mass of buoy, s : Coordinate along cable. D : Drag on buoy.E' : 
Youngs modulus of the cable. A : Area of cable, t : time 
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Mass Disorder 

1 
2 
3 
4 

-29,9849 
43.3032 
-3.4485 

.7147 

Table 5.1: Disorder 

Cable Mass             1 
EA = 600iV M=200 kg (sphere) 

p = 1070kg/m3 d=.669 m(sphere) 
d = .0252m 
nL = 1000m 

Table 5.2: Column 1 : Cable Parameters, Column2 : Mass Parameters 
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shown in figure 5-5. Note that although we are examining in plane displacement, 

we have plotted the displacement in a transverse fashion. This is only for ease of 

viewing. The modes of the disordered structure for configuration (a) are shown in 

figure 5-6, 5-7 and 5-8. Note that the fundamental set of modes shown in figure 5-6 

are not localized. But all the higher groups of modes as shown in figure 5-7 and 5-8 

are localized. Thus localization is not useful for localizing low frequency vibration. It 

is useful for localizing higher frequency oscillations. Essentially, the reason is that in 

situations where the modes can be localized, the stretch of cable between the masses 

can be viewed as an oscillator with the mass serving as a decoupling element. In the 

limit of the mass tending to infinity, we recover the degenerate situation corresponding 

to a set of decoupled pendula and for the other situation where the mass tends to 

zero, we recover the asymptotic case corresponding to a system of rigidly coupled 

pendula. 

Localization can thus be used as a passive vibration isolation device only in a 

restricted set of frequencies. During applications, we have to ensure that the distri- 

bution of the passband natural frequencies has a special distribution for the vibration 

isolation to be effective. 

However for oceanographic structures in relatively deeper waters, as we will see, 

this is precisely the distribution of the passband natural frequencies and can be ex- 

ploited to design a passive vibration isolation device. We note that for the effective 

utilization of mode localization as a passive vibration isolation device, we need to 

ensure that the fundamental set of modes which are nonlocalizable have to be at the 

lower end of the sea-spectrum where there is no energy while the localizable modes 

may be permitted to remain in the region of the sea spectrum where there is sig- 

nificant energy. We use a Pierson-Moskowitz Spectrum to represent the sea-state 

assuming a fully developed sea-state (fetch-independent) with a modal frequency at 

.5 rad/s. The Pierson-Moskowitz Spectrum is generated using 

S(LU) = S.llO-^e"^11 (5.6) 
or 
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Figure 5-6: Fundamental Set of Modes for Disordered Structure 
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Figure 5-7: First Harmonic Set of Modes for Disordered Structure 
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Figure 5-8: Second Harmonic Set of Modes for Disordered Structure 
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where um is the modal frequency and S(u) is the spectrum. This is shown in 

figure 5-9. 

We summarize the design constraints 

(a) The lowest passband corresponds to modes whose half wavelengths are of the 

order of the whole structure and cannot be localized. 

(b) The lowest passband whose modes can be localized is that for which the half 

wavelength of the center frequency is of the order of the distance between the masses. 

(c) The sea-spectrum is such that the wave zone is between 0.4-1.2 rad/s. So the 

lowest passband (nonlocalizable) should be positioned at frequencies below the wave 

zone. The higher passband (localizable) can be positioned at the wave zone or higher. 

We can do a preliminary design feasibility plot to determine the parameter ranges 

in which we could have a feasible design given these constraints. We note the if we 

desire half wavelength of the order of the distance between the masses or smaller, 

Here L is the distance between the masses. We require u> to be between 0.4 rad/s 

and 1.6 rad/s. p is fixed for the cable. So we prepare a plot indicating the variation of 

E and L with u. This is shown in figure 5-10. We note that we can use this in shallow 

water moorings (40 m) only if we have very low Youngs Modulus Values of E = 104 

Pascals. With existing technology (we quote Youngs Modulus values from commercial 

material available from Buoy Technology Inc.), we would need distances between the 

masses to be 150 — 200 m. The Youngs Modulus value here was E = 1.2 x 106 Pascals. 

So we shall focus on deep water applications. 

We now consider the response of the structure to typical sea-spectra as shown in 

figure 5-9. We consider a structure with 20 segments of cable and 19 masses between 

them. The masses are separated by lengths of 200 m. The details of the cable and 

mass are given in table 5-3. The total length of the structure was 4000 m. 

The damping constant b is estimated using the equation 

b = CDpA (5.8) 
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Figure 5-10: Design Curves for selection of E and the distance between masses 
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Cable Mass 

E = 103N M=5000 kg (sphere) 
p = I070kg/mz d=1.54 m(sphere) 

d = .3257m 
nL = 4000m 

Table 5.3: Column 1 : Cable Parameters, Column2 : Mass Parameters 

The coefficient of drag CD associated with the submerged sphere (This is taken to 

be .1 from Newman [24]), V is the velocity associated with the motion of the sphere, 

and A is the projected area on the direction of motion of the sphere. This is included 

in the equations of motion for the submerged sphere. 

If H(u) is the transfer function of the system and S(u) is the sea-spectrum, then 

the Response Amplitude Operator is 

Y(u) = \H(u)\2S{u) (5.9) 

In figure 5-11, we show the transfer function of the mooring for the periodic case. 

Note the first bay has significantly more amplitude than the other bays because of 

damping but there is clear evidence of a spatially extended response. In figure 5-12, 

we show the transfer function of the mooring for the disordered case. The disordered 

system shows clear evidence of vibration isolation with the lower half of the structure 

showing almost zero amplitude. 

We now examine the responses of the same structure but with the free end con- 

dition corresponding to the towed condition. We also ensure that for the disordered 

structure, the same set of disorder is used to provide comparison. 

We now examined the disordered case in figure 5-13. The response is slightly 

more localized than in figure 5-12 but not significantly so. Hence we can conclude 

that changing the boundary conditions did not alter the fundamental nature of the 

response for the localized case. 
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Figure 5-11: Transfer Function for Periodic Case 
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Figure 5-12: Transfer Function for Disordered Case 
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5.5     Conclusions 

We demonstrate the application of mode localization to a practical structure (an 

oceanographic mooring). First, we demonstrate the existence of localization of har- 

monic modes in this structure. We did not find localization useful as a passive vi- 

bration isolation device for shallow water moorings(40 m) but we found it useful for 

deep water moorings from 1000-4000 m. We ensure that nonlocalizable (fundamen- 

tal) modes fall outside the wave zone of the sea spectrum. We found that altering 

boundary conditions (towed and moored) does not result in any significant change in 

localization. 
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Fi°nre 5-13: Transfer Function for Disordered Case for Boundary Condition 2 
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Chapter 6 

Conclusions and 

Recommendations for Future 

Work 

6.1    Main Features 

We will, in this section, briefly describe the main features of the work in this thesis. 

This work has succeeded in filling a few gaps existing in research in the area of 

localization caused by deterministically introduced disorder. 

Perhaps the best way to realize where this work fits in is to understand the chain 

of research that has occured in the field of localization. The work started with seminal 

work by Hodges and Woodhouse [16] (See the tree in figure 6-1). Their papers ([17], 

[19]) resulted in a series of spin-off papers by other authors (Kissel [20], Pierre et al. 

[27], [29], [28], [31] and Triantafyllou and Triantafyllou [39]). Hodges and Woodhouse 

[18] also interpreted many of the results of solid-state literature in a form that was 

meaningful to the structural-dynamics community. 

The precise niche that this thesis has carved out for itself is apparent by viewing 

figure 6-1. The main contribution of this thesis is in providing a framework to under- 

stand modal sensitivity and then using that to create a new area of study i.e. optimal 
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localization. This has tremendous potential in the area of passive vibration isolation. 

6.2    Summary of Conclusions 

In Chapter 2, we showed that Jordan Block perturbation expansions about branch 

points in the complex plane are a useful tool to describe modes of a real system of 

pendula in a state of moderate localization. We also solve the branch point equations 

to obtain the convergence zones of the various perturbation techniques. 

In Chapter 3, we provided numerical confirmation of the fact that modal sensitivity 

and localization were phenomena associated with the presence of branch points. We 

examine the effects of parameter combinations which result in the system of pendula 

being close to branch points of different orders. Sensitivity due to branch points 

depends on the order of the branch point and the magnitude of the imaginary part. 

The modes associated with different order branch points have different appearances. 

The conflicting effects of the two parameters on localization are examined. The 

existence of optimal directions in the parameter space along which localization is a 

maximum is also noted. 

In Chapter 4, we solve the problem of selecting parameter combinations to ensure 

all the modes have a certain minimum level of localization. The optimal solutions were 

found to be at maximum distance from the branch point surfaces and the convergence 

basins of the optimal solutions were found to be divided by the sectors of space created 

by the two root coalescence lines. This knowledge was used to install a numerical 

scheme to track down all the optima. The initial search determined a point within the 

convergence basin and reasonable close to the final solution. The final solution was 

found by using a steepest descent method. The number of optima and computational 

effort was found to grow exponentially with the number of pendula. A statistical 

analysis was done to show that sampling as few as 10% of the optima provided a 

solution within 2% of the global optimum. However due to the exponential growth of 

optima and effort with the number of disorder parameters, this result only helps for 

smaller systems of pendula (approximately two to ten pendula). For larger systems, 
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Figure 6-1: Flow of Research in Mode Localization 

173 



the large number of optima makes it impossible to determine the global optimum in 

any reasonable time. This is a failing in the research. 

Applications of localization as a passive vibration isolation device were studied. 

The structure studied was an oceanographic mooring with regularly spaced subsurface 

buoys and the vibrations of concern were the inline, elastic oscillations. It was found 

useful for localization of the harmonics. It was found useful in deep waters of depths 

from 1000m — 4000m. Moored and towed boundary condition were examined. It 

was found that the alteration of boundary conditions resulted in the towed condition 

having similar localization. 

6.3    Future Work 

Future Work would involve the following three main areas 

(a) Determining the branch point surface for a two dimensional system. Compar- 

ing how these surfaces with those for one dimensional surfaces. 

(b) Determining the bifurcation equations for a continuous system. How do these 

branch point surfaces look for such a system ? Even the continuous system we looked 

at in Chapter 5 had a discrete aspect in the sense that the mass was a point mass. 

How would this system link up with the WKB problems studied earlier (Luongo [23]) 

(c) Determining methods for applying these optimization techniques to continuous 

systems. In present form, these methods are only applicable to discrete sytems like 

the system of coupled pendula or spring-mass systems. 

(d) Suitable methods to estimate the global optimum of large systems of coupled 

pendula. 

This thesis is only a small step in understanding localization. We have mostly 

focused on linear dynamics. There is of course considerable research to be done in 

the area of response localization in coupled oscillators with nonlinear dynamics. A 

good start has been made by Tjavaras [38] in examining coupled nonlinear oscillators 

in one dimension. However nonlinear dynamics and localization for two dimensional 

coupled oscillators is still an unexplored area. 
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Appendix A 

Definition of Modal Sensitivity 

and Localization Factor 

A.l    Definitions of Modal Sensitivity Parameter 

and Localization Factor 

Consider a dynamic system dependent on only one parameter e. We seek to study 

the sensitivity of the mode shapes to the disorder parameter e. So we introduce the 

modal sensitivity parameter 

Qtoie)=,imWl±liziWl (A.1) 
£ '-»-o e 

This is a classical definition of a derivative with the vertical lines denoting the 

Euclidean norm in the n dimensional space spanned by the vector. We will use this 

definition of the derivative to describe the modal sensitivity. In general for a system 

of pendula, where we have n different disorder parameters e;, we would have partial 

modal sensitivity parameters (PMSP). The total derivative for the ith mode would 

then be expressed as follows : 

Q(fc) = EQ(fc,e;)2 (A.2) 
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We also define the following measure of localization. Consider the mode shape 

given by $. We seek to provide a quantitative measure of the localization in the 

system. Anderson's original theorems on localization predicted an exponential decay 

in the mode shape especially in the limit of the number of substructures tending 

to infinity. This was used as the basis for definitions of measures of localization. 

Most of these used the exponential decay constant associated with the mode shape to 

provide a measure of the extent to which the mode shapes were localized. They were 

used in the context of randomly introduced disorder. However, since we are studying 

localization caused by deterministically introduced disorder, we will use the following 

measure of localization. Consider the mode shape qi(j) where i denoted the zth mode 

and j denotes the amplitude at the j th oscillator. Evaluate y,-(_?') = log[qi(j)]. Fit a 

simple regression to the curve. Determine the slope 7. This is the localization factor. 

In figure A-l, we provide an example where the modes of the system are mod- 

erately localized and there is a need to determine a logarithmic fit to determine the 

constant of exponential decay. In figure A-2, we provide an example where the modes 

are heavily localized and there exists a well defined exponential decay. 

There is an obvious connection between localization and modal sensitivity. The 

modes for any combination of disorder are essentially an integral of the modal sensitiv- 

ity over the parameter space. The localization factor is the exponential fit associated 

with the mode shapes. 

Thus zones where the modal sensitivity is high also correspond to zones where the 

localization factor changes very rapidly. In general, the modal sensitivity contours 

must run parallel to the localization factor contours because of the relation between 

the modal sensitivitv and the localization factor. 
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Appendix B 

Solutions to Jordan Block Size 

Three Perturbation 

The perturbation problem for the Jordan block of size three is derived in this ap- 

pendix. The perturbation series about the Jordan block of size three is written as 

follows : 

. 1 „2 

[K0+5K+ö2K}{xoi+63x+5zx+6x+...} = (\0+6i\+Ö3\+ö\+...){xoi+63x+S*x+...} 

(B.l) 

We have expanded the eigenvector and eigenvalue in a series in one-third powers of 

the disorder. 

O(i) 

[K0 - A0i>oi = 0 (B.2) 

0(e$) 

[K0 - \0I}{6*x} = Sh{x01} (B.3) 

O(ef) 

[K0 - X0I]{5h} = (Sh){6h} + (öh){x01} (B.4) 
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O(e) 

[K0 - XQI]{Sx} = -{SK - (6X)I]{x} + (6h){6*x) + (5h){5*x} (B.5) 

0(eS) 

[K0 - \0I]{6$x) = -\5K - {6X)I}{5*x} + (6*\){5x} + (Sh){5h) (B.6) 

O(ef) 

[K0-X0I]{6x} = -m-{5\)I]{6h} + {6h){6*x} + (öh){6x} + (6h){6*x} (B.7) 

0(e2) 

[K0 - X0I}{62x} = ~[52K - 52XI){xQl) - [5K - 5XI}{5x} + (6*\){6*x)+     (B.8) 

(öh)(slx) + {sh){sh} + (<jf x){ö*x} 

O(el) 

[K0 - XQI]{Sh} = -[62K - 62\I]{6±x} - [5K - ÖXI]{ölx} + {S"x)(S2x)+   (B.9) 

(6h)(ö'x) + (5h){öx} + (<jt X){öh} + (öh){x0l} 

O(ef) 

[K0-X0I]{6lx} = -[82K-62XI]{S^}-[SK-SXI]{Sh} + (6h)(Sh) + (6^X)(62x)+ 

(B.10) 

(5h){Slx} + (Sh){Sx} + (5h){5*x} + (Sh){x01} 

As in classical matrix perturbation, we will expand the eigenvector perturbation 

at each order as a linear combination of the basis vectors. If m is the order of the 

perturbation, then: 
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r m 

(B.ll) 

In these equations, the unknowns are cm.ti,..., cm^^A. 

Solution of the Problem 

The orthogonality relation yields 

2/01 (X01 + ^3£ + Ö3X + ...)  = ,0 (B.12) 

Equating the left and right hand side term by term, we get 

Cm 1 = 0 
3 'L 

(B.13) 

if m> 1. 

At each order, we multiply successively by y^, y"2 and y^ to evaluate the eigen- 

value and eigenvector perturbation. We have to solve sytems of equations of size three 

to obtain solutions to the perturbation coefficients at any order. We get three sepa- 

rate solutions emerging from the Jordan block eigenvector as we perturb the matrix. 

The lowest order solutions are 

0(CS) 

6h^{yg(SK)x0l)le^ {Bu) 

yoi^oi 

Here 1 < j < 3 and i = \f^\. 

ci,=(j3A (B.15) 

%2 = 0 (B.16) 

ci,3 = 0 (B.17) 
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Higher order perturbation coefficients can be obtained by applying this procedure. 

If we compute perturbation coefficients for 0(e2), we have to write out equations for 

orders extending to the O(eä) problem. This is due to the observation made in 

Chapter 2 that to solve for the complete problem at any order m, we have to write 

out the equations for 0(^ + n~)- Equations at different orders are coupled together 

and are solved to obtain the unknown perturbation coefficients. 
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Appendix C 

Examples of Branch Point 

Surfaces and their effects on 

Localization 

We examine a few more examples of branch point surfaces and their effects on local- 

ization. We examine Q{qi,ei) for a system of three pendula. We solve equations 3-1 

and 3-2 for complex (A,ei) given that e2 is permitted to be real. We plot Q{qu 61) 

superposed on the square-root branch surface. We again see the correlation between 

the branch point curves and modal sensitivity. 

We now plot the two root coalescence surfaces for the system of four pendula. 

We permit e2 and e3 to be real and solve for complex A and ex. We obtain three 

surfaces, the real parts of which are plotted in figures B-l, B-2 and B-3. Note the 

complicated folds of these surfaces. On these surfaces, we would have two modes with 

appreciable sensitivity and with appreciable amplitude on two oscillators in complete 

analogy to the two pendulum problem. The other two modes are localized. Again 

three root coalescences would occur where these two root coalescences come close 

together. This three root coalescence forms a line in the space spanned by these real 

coordinates. Thus we have a surface of reduced dimension associated with the higher 

order coalescence. 

183 



-0.04 -0.02       0       0.02     0.04 

£  « 

-0.04 -0.02       0       0.02    0.04 

£1 

Figure C-l: Modal Sensitivity Parameter Q{qj,t\). 

184 



I .VO rtCOi Cc5. = 5- = -,c = :-~ac3. Four Penci"!a o-->~.-—, 

Figure C-2: Four Pendula System : Two Root Coalescence Surface Number 1 (Com- 
plex ex) 

155 



0.G5- 

0.04 -. 

0.02 - 

0» 

-G.C5 - 

r\ no 

Figure C-3: Four Pendula System : Two Root Coalescence Surface Xumc 
plex d) 

2 (Com- 

186 



i'.vo Root Ccaiescer.ce Surface. Fo'jr Pe~3u;a Problem 

-0.05 

U.Oo 

Figure C-4: Four Pendula System : Two Root Coalescence Surface Number 3 (Com- 
plex €\) 

187 



Appendix D 

Solution of the System of 

Equations 

We now discuss the methods used to solve the system of equations. We note at the 

outset that optimal solutions using Lagrange multipliers are saddle point solutions. 

So we have not resorted to using minimization techniques like the conjugate gradient 

method (Rao [35]) to obtain the minimum of the objective function. There is no 

minimum, and only a saddle point exists at the solution. The only way to solve the 

problem is by actual solution of the conditions for existence of an optimal solution 

i.e. we solve the problem using nonlinear equation solution techniques rather than 

minimization techniques unless we use a penalty function approach(Rao [35]). The 

main solution method we used is the Gauss-Newton method with cubic-quadratic 

line-search (also called the Steepest Descent Method). Some of our calculations were 

verified using the NAG algorithm, the Fletcher-Powell method. We will briefly re- 

view this method also. For some of the trivial (smaller cases of three pendula) ex- 

amples, we also verified the techniques using the Matlab command "fsolve", which 

utilized a combination of the Gauss-Newton (with cubic-quadratic line search) and 

the Levenberg-Marquadt method. The Levenberg-Marquadt solution is essentially a 

relative of the Fletcher-Powell method. 

Consider a general system of nonlinear algebraic equations as given below. 
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fj(xi)=0 (D.l) 

Here /{ is so that 1 < i < n and 1 < j < n. We briefly compare the bare equations 

of the Steepest Descent and Levenberg-Marquadt Methods. These are all forms of 

explicit Jacobian Methods. 

We shall frequently in this section, utilize the least-squares residue which is de- 

noted as follows : 

9 = t(f!) (D.2) 

D.0.1     The General Form of Equations 

The General Equations of the Explicit Jacobian form are as follows 

xi+i =Xi- HifiU (D.3) 

This general way of viewing these classes of solution methodologies has been advo- 

cated by Broyden [7]. Here Ht is a matrix at the ith iteration, xt is the ithe iteration, 

d is the function values at the ith iteration, and tt is a fraction between 0 and 1. 

For the classical Newton method in n dimensions, we have 

Hi = J'1 (D.4) 

where J{ is the Jacobian matrix associated with the system of equations D.I. 

t = 1.0 (D.5) 

For the method of steepest descent, we have 

Hi = Jj (D.6) 
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U > 0 (D.7) 

Note in the method of steepest descent, the gradient of the least squares residue g is 

2JTf. And the factor 2 is absorbed in the £,-. For the Levenberg-Marquadt method, 

we have 

Hi = {JJJ + A,/)"1 JT (D.8) 

U = 1.0 (D.9) 

We next provide some deeper explanation of the two methods. 

D.O.2    Method of Steepest Descent 

We now briefy prove that this is indeed the steepest descent direction following the 

development in Rao [35]. The rate of change of g with respect to the step length ds 

is given by 

If u denotes the unit vector along the direction dr. we get 

dr = uds (D.ll) 

We then have 

We write the gradient as an expansion in the components of the unit vectors u*. 

We seek to select a set of unit vector components U{ so that the descent direction is 

steepest while ensuring J2i=i ul = 1- We write the Lagrange function as 
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da izzn 

L(ui,\) = f + \{1-Y,«i) (D.13) as i=l 

We set the derivatives of L with respect to U{ equal to zero. We obtain 

da. 

u, - -^ *t 
|V5| 

and 

(D.14) 

A = ^ (D.15) 

Thus the steepest descent direction is indeed the direction whose cosines corre- 

spond to that of the gradient. 

There have been complaints raised against the convergence properties of the Gauss 

Newton Method(Rao [35]). See figure 4-1 for an example of situations where the 

convergence may be poor. We see that there is a tendency for the iterative scheme 

to move along directions which are in a zig-zag fashion rather than in a move along 

directions which are in a zig-zag fashion rather than in a path which goes directly to 

the solution. 

The best search direction in a local sense is the direction along the gradient. 

However when we are attempting a solution in multiple dimensions, it is not necessary 

that the taking the entire Gauss-Newton step would be of advantage because the 

function may not necessarily be decreasing the entire step. It is necessary to determine 

how much of a step we should take in this direction. This is done by assuming the 

function to have a cubic or quadratic variation in this search direction(See Press et 

al. [33]) and then taking the step in such a fashion as to maximize the decrement 

of the function. The Gauss Newton method assures us linear convergence if we are 

sufficiently close to the solution. 
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Figure D-l: Example Case where the Steepest Descent Method is inefficient 
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D.O.3    Model-Trust Region Approaches 

The Fletcher Powell Method and Levenberg Marquadt Methods are philosophically 

very different from the Steepest Descent Method and utilize a model trust region 

approach. We will very briefly describe the Fletcher Powell Method. Interested 

readers are referred to Broyden [7] or Powell [32] for greater details. 

It has been numerically observed that the steepest descent method has linear 

convergence and is often slow in the neighborhood of the actual solution. But it is 

more effective further away from the actual solution. The Newton Raphson in multiple 

dimensions has a much smaller convergence zone but has a quadratic convergence close 

to the actual solution. The model trust region approach was designed to combine the 

best of both techniques. 

If A, is sufficiently large, we obtain the steepest descent step in the asymptotic 

limit while if A; is sufficiently small, we get the Newton step. The Fletcher Powell and 

Levenberg-Marquadt method only differ in the way the Jacobian Matrix is obtained. 

The Levenberg Marquadt method relies on the use of analytical or finite difference 

formulations for the Jacobian. The Fletcher Powell Method analytically calculates 

the Jacobian only for the first iteration. Subsequent iterations use approximations 

which are as follow 

J j^p  (D-16) 

and the inverse of the Jacobian is 

Hk+i = ffk, (6k - Hkjk)5kHk 

a{5kHk
1

k) + {l-a)\\5k\\2 \P.U) 

The value of alpha is calculated by determining if 

\6kHk~fk\ < .l\6k\2 (D.18) 

where a — .8 else a — 1. Also at each iteration, 
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# = -Hij/stf) (D.19) 

^ = fl(x* + 6h) - ft(x
k) (D.20) 

This defines all the quantities in each iteration. The basis for these formulae 

are some theorems which guarantee that the error norm with respect to the actual 

Jacobian, using this sequence of formulae is going to decrease with each successive 

iteration. This approach avoids all the extra effort in computing the Jacobian at each 

time step in the Levenberg-Marquadt Method. 

D.O.4    Comparison Between the Different Methods 

According to R.S.Schnabel [36], numerical experimentation over the years has not 

indicated any consistently large differences between these methods. In our numer- 

ical experimentation too, we did not notice any really significant differences in the 

performances of these methods. 
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